首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 377 毫秒
1.
In this article, a closed-form solution for one-dimensional magnetothermoelastic problem in a functionally graded material (FGM) hollow sphere placed in uniform magnetic and temperature fields subjected to an internal pressure is obtained using the infinitesimal theory of magnetothermoelasticity. Hyper-geometric functions are employed to solve the governing equation. The material properties through the graded direction are assumed to be nonlinear with an exponential distribution. The nonhomogeneity of the material in the radial direction is assumed to be exponential. The temperature, displacement and stress fields and the perturbation of magnetic field vector are determined and compared with those of the homogeneous case. Hence, the effect of inhomogeneity on the stresses and the perturbation of magnetic field vector distribution are demonstrated. The results of this study are applicable for designing optimum FGM hollow spheres.  相似文献   

2.
In this article, an analytical method is developed to obtain the response of magnetothermoelastic stress and perturbation of the magnetic field vector for a thick-walled spherical functionally graded materials (FGM) vessel. The vessel, which is placed in a uniform magnetic field, is subjected to an internal pressure and transient temperature gradient. Using the Hankel and Laplace transform techniques, the dynamic equation of magnetothermoelastic is solved and the radial and circumferential stresses as well as the perturbation of the magnetic field vector for a typical material are obtained. Moreover, the effect of magnetic field vector and material inhomogeneity on the stresses is investigated.  相似文献   

3.
This paper presents an analytical solution for the interaction of electric potentials,electric displacements,elastic deformations,and thermoelasticity,and describes electromagnetoelastic responses and perturbation of the magnetic field vector in hollow structures(cylinder or sphere),subjected to mechanical load and electric potential.The material properties,thermal expansion coefficient and magnetic permeability of the structure are assumed to be graded in the radial direction by a power law distribution.In the present model we consider the solution for the case of a hollow structure made of viscoelastic isotropic material,reinforced by elastic isotropic fibers,this material is considered as structurally anisotropic material.The exact solutions for stresses and perturbations of the magnetic field vector in FGM hollow structures are determined using the infinitesimal theory of magnetothermoelasticity,and then the hollow structure model with viscoelastic material is solved using the correspondence principle and Illyushin’s approximation method.Finally,numerical results are carried out and discussed.  相似文献   

4.
This study presents an analytical solution of thermal and mechanical displacements, strains, and stresses for a thick-walled rotating spherical pressure vessel made of functionally graded materials(FGMs). The pressure vessel is subject to axisymmetric mechanical and thermal loadings within a uniform magnetic field. The material properties of the FGM are considered as the power-law distribution along the thickness. Navier's equation, which is a second-order ordinary differential equation, is derived from the mechanical equilibrium equation with the consideration of the thermal stresses and the Lorentz force resulting from the magnetic field. The distributions of the displacement,strains, and stresses are determined by the exact solution to Navier's equation. Numerical results clarify the influence of the thermal loading, magnetic field, non-homogeneity constant, internal pressure, and angular velocity on the magneto-thermo-elastic response of the functionally graded spherical vessel. It is observed that these parameters have remarkable effects on the distributions of radial displacement, radial and circumferential strains, and radial and circumferential stresses.  相似文献   

5.
A postbuckling analysis is presented for a functionally graded cylindrical shell subjected to torsion in thermal environments. Heat conduction and temperature-dependent material properties are both taken into account. The temperature field considered is assumed to be a uniform distribution over the shell surface and varied in the thickness direction. The material properties of functionally graded materials (FGMs) are assumed to be graded in the thickness direction according to a simple power law distribution in terms of the volume fractions of the constituents, and are assumed to be temperature-dependent. The governing equations are based on a higher order shear deformation theory with a von Kármán–Donnell-type of kinematic non-linearity. The non-linear prebuckling deformations and initial geometric imperfections of the shell are both taken into account. A singular perturbation technique is employed to determine the buckling load and postbuckling equilibrium paths. The numerical illustrations concern the postbuckling behavior of twist, perfect and imperfect, FGM cylindrical shells under different sets of thermal fields. The results reveal that the volume fraction distribution of FGMs has a significant effect on the buckling load and postbuckling behavior of FGM cylindrical shells subjected to torsion. They also confirm that the torsional postbuckling equilibrium path is weakly unstable and the shell structure is virtually imperfection–insensitive.  相似文献   

6.
Piezoelectric-piezomagnetic functionally graded materials (FGM), with a gradual change of the mechanical and electromagnetic properties, have greatly applying promises. Based on Legendre orthogonal polynomial series expansion approach, a dynamic solution is presented for the propagation of circumferential harmonic waves in piezoelectric-piezomagnetic FGM cylindrical curved plates. The materials properties are assumed to vary in the direction of the thickness according to a known variation law. The dispersion curves of the piezoelectric-piezomagnetic FGM cylindrical curved plate and the corresponding non-piezoelectric and non-piezomagnetic cylindrical curved plates are calculated to show the influences of the piezoelectricity and piezomagnetism. Electric potential and magnetic potential distributions are also obtained to illustrate the different influences of the piezoelectricity and piezomagnetism. Finally, a cylindrical curved plate at a different ratio of radius to thickness is calculated to show the influence of the ratio on the piezoelectric effect and piezomagnetic effect.  相似文献   

7.
In this paper, the mechanical responses of a thick-walled functionally graded hollow cylinder subject to a uniform magnetic field and inner-pressurized loads are studied. Rather than directly assume the material constants as some specific function forms displayed in pre-studies, we firstly give the volume fractions of different constituents of the functionally graded material (FGM) cylinder and then determine the expressions of the material constants. With the use of the Voigt method, the corresponding analytical solutions of displacements in the radial direction, the strain and stress components, and the perturbation magnetic field vector are derived. In the numerical part, the effects of the volume fraction on the displacement, strain and stress components, and the magnetic perturbation field vector are investigated. Moreover, by some appropriate choices of the material constants, we find that the obtained results in this paper can reduce to some special cases given in the previous studies.  相似文献   

8.
Hong-Liang Dai  Ting Dai 《Meccanica》2014,49(5):1069-1081
An analytic study for thermoelastic bending of a functionally graded material (FGM) cylindrical shell subjected to a uniform transverse mechanical load and non-uniform thermal loads is presented. Based on the classical linear shell theory, the equations with the radial deflection and horizontal displacement are derived out. An arbitrary material property of the FGM cylindrical shell is assumed to vary through the thickness of the cylindrical shell, and exact solution of the problem is obtained by using an analytic method. For the FGM cylindrical shell with fixed and simply supported boundary conditions, the effects of mechanical load, thermal load and the power law exponent on the deformation of the FGM cylindrical shell are analyzed and discussed.  相似文献   

9.
Formulas are obtained for the forces and moments acting on a spherical body made of a paramagnetic material in an uniform applied magnetic field and a magnet in a spherical vessel filled with magnetic fluid. An approximate formula is found for the force acting on bodies in ellipsoidal and cylindrical vessels or in a plane channel with a magnetic fluid in an uniform magnetic field. An analogy between the forces acting on a magnet and a paramagnetic body is demonstrated. The possibility of levitation of magnets and paramagnetic bodies in a vessel with a magnetic fluid is investigated.  相似文献   

10.
The problem on the stress–strain state of an infinite isotropic body made of a magnetically soft material and containing a spherical cavity is considered. It is assumed that the body is under an external magnetic field. The basic characteristics of the stress–strain state and the magnetic field induced are determined and their singularities near the cavity are studied. Graphs are presented for the total magnitoelastic and Maxwell stresses as functions of the magnetic induction, the angle of dip, and the mechanical and magnetic properties of the material  相似文献   

11.
In this paper, investigation on buckling and post-buckling behaviors of a laminated cylindrical shell of functionally graded material (FGM) with the piezoelectric fiber reinforced composite (PFRC) actuators subjected to thermal and axial compressed loads is presented. Based on the Donnell assumptions, the material properties of the FGM layer vary smoothly through the laminated cylindrical shell thickness according to a power law distribution of the volume fraction of constituent materials. In the present study, a numerical procedure for the laminated cylindrical shell is used based on the Ritz energy method and the nonlinear strain–displacement relations. Some useful discussion and numerical examples are presented to show various effects of temperature field, volume fraction and geometric parameters on the buckling and post-buckling behaviors of the laminated cylindrical shell with PFRC.  相似文献   

12.
In recent years, functionally graded material (FGM) has been widely explored in coating technology amongst both academic and industry communities. FGM coatings are suitable substitutes for many typical conventional coatings which are susceptible to cracking, debonding and eventual functional failure due to the mismatch of material properties at the coating/substrate interface. In this study, a thick spherical pressure vessel with an inner FGM coating subjected to internal and external hydrostatic pressure is analyzed within the context of three-dimensional elasticity theory. Young’s modulus of the coating is assumed to vary linearly or exponentially through the thickness, while Poisson’s ratio is considered as constant. A comparative numerical study of FGM versus homogeneous coating is conducted for the case of vessel under internal pressure, and the dependence of stress and displacement fields on the type of coating is examined and discussed.  相似文献   

13.
A postbuckling analysis is presented for a simply supported, shear deformable functionally graded plate with piezoelectric actuators subjected to the combined action of mechanical, electrical and thermal loads. The temperature field considered is assumed to be of uniform distribution over the plate surface and through the plate thickness and the electric field considered only has non-zero-valued component EZ. The material properties of functionally graded materials (FGMs) are assumed to be graded in the thickness direction according to a simple power law distribution in terms of the volume fractions of the constituents, and the material properties of both FGM and piezoelectric layers are assumed to be temperature-dependent. The governing equations are based on a higher order shear deformation plate theory that includes thermo-piezoelectric effects. The initial geometric imperfection of the plate is taken into account. Two cases of the in-plane boundary conditions are considered. A two step perturbation technique is employed to determine buckling loads and postbuckling equilibrium paths. The numerical illustrations concern the postbuckling behavior of perfect and imperfect, geometrically mid-plane symmetric FGM plates with fully covered or embedded piezoelectric actuators under different sets of thermal and electric loading conditions. The effects played by temperature rise, volume fraction distribution, applied voltage, the character of in-plane boundary conditions, as well as initial geometric imperfections are studied.  相似文献   

14.
In this work, a self-consistent constitutive framework is proposed to describe the behaviour of a generic three-layered system containing a functionally graded material (FGM) layer subjected to thermal loading. Analytical and semi-analytical solutions are obtained to describe the thermo-elastic and thermo-elastoplastic behaviour of a three-layered system consisting of a metallic and a ceramic layer joined together by an FGM layer of arbitrary composition profile. Solutions for the stress distributions in a generic FGM system subjected to arbitrary temperature transient conditions are presented. The homogenisation of the local elastoplastic FGM behaviour in terms of the properties of its individual phases is performed using a self-consistent approach. In this work, power-law strain hardening behaviour is assumed for the FGM metallic phase. The stress distributions within the FGM systems are compared with accurate numerical solutions obtained from finite element analyses and good agreement is found throughout. Solutions are also given for the critical temperature transients required for the onset of plastic deformation within the three-layered systems.  相似文献   

15.
The nonlinear stability of sandwich cylindrical shells comprising porous functionally graded material(FGM) and carbon nanotube reinforced composite(CNTRC)layers subjected to uniform temperature rise is investigated. Two sandwich models corresponding to CNTRC and FGM face sheets are proposed. Carbon nanotubes(CNTs) in the CNTRC layer are embedded into a matrix according to functionally graded distributions. The effects of porosity in the FGM and the temperature dependence of properties of all constituent materials are considered. The effective properties of the porous FGM and CNTRC are determined by using the modified and extended versions of a linear mixture rule, respectively. The basic equations governing the stability problem of thin sandwich cylindrical shells are established within the framework of the Donnell shell theory including the von K'arm'an-Donnell nonlinearity. These equations are solved by using the multi-term analytical solutions and the Galerkin method for simply supported shells.The critical buckling temperatures and postbuckling paths are determined through an iteration procedure. The study reveals that the sandwich shell model with a CNTRC core layer and relatively thin porous FGM face sheets can have the best capacity of thermal load carrying. In addition, unlike the cases of mechanical loads, porosities have beneficial effects on the nonlinear stability of sandwich shells under the thermal load. It is suggested that an appropriate combination of advantages of FGM and CNTRC can result in optimal efficiency for advanced sandwich structures.  相似文献   

16.
功能梯度夹层多个环形界面裂纹扭转冲击   总被引:1,自引:1,他引:0  
冯文杰  Su RKL 《力学学报》2005,37(1):120-124
研究位于功能梯度层和外部均匀材料之间多个环形界面裂纹的扭转冲击问题,功能梯度材料 (FGM)粘结在两种不同的弹性材料之间,功能梯度层和外部材料之间环形界面裂纹的数目是任意的.引进积分变换和位错密度函数将问题化为求解Laplace域里标准的Cauchy奇异积分方程,进而化为求解代数方程;应用Laplace数值反演技术,计算时域里的动应力强度因子(DSIF).考查了结构几何尺度和材料特性对裂尖动态断裂特性的影响.数值结果表明,DSIF存在一个主峰,到达主峰后,在其相应的静态值附近波动并最终趋于稳定;增加FGM的梯度能减小DSIF的峰值.  相似文献   

17.
Thermomechanical instability of shallow spherical shells made of functionally graded material (FGM) and surface-bonded piezoelectric actuators is studied in this paper. The governing equations are based on the classical shell theory of shells and the Sanders nonlinear kinematics equations. It is assumed that the property of the FGMs varies continuously through the thickness of the shell according to a power law distribution of the volume fraction of the constituent materials. The constituent materials of the functionally graded shell are assumed to be mixture of ceramic and metal. The analytical solutions are obtained for uniform external pressure, thermal loading, and constant applied actuator voltage.  相似文献   

18.
Thermal instability of shallow spherical shells made of functionally graded material (FGM) and surface-bonded piezoelectric actuators is studied in this paper. The governing equations are based on the first order theory of shells and the Sanders nonlinear kinematics equations. It is assumed that the property of the functionally graded materials vary continuously through the thickness of the shell according to a power law distribution of the volume fraction of the constituent materials. The constituent material of the functionally graded shell is assumed to be a mixture of ceramic and metal. The analytical solutions are obtained for three types of thermal loadings and constant applied actuator voltage. Results for simpler states are validated with the known data in literature.  相似文献   

19.
Based on the fundamental dynamic equations of functionally graded material (FGM) cylindrical shell, this paper investigates the sound radiation of vibrational FGM shell in water by mobility method. This model takes into account the exterior fluid loading due to the sound press radiated by the FGM shell. The FGM cylindrical shell was excited by a harmonic line radial force uniformly distributing along the generator. The FGM shell equations of motion, the Helmholtz equation in the exterior fluid medium and the continuity equation at fluid-shell interface are used in this vibroacoustic problem. The expressions of sound radiation efficiency and sound field of the FGM shell have been derived by mobility method. Radiation efficiency, modal mobility and the directivity pattern of the sound field are solved numerically. In particular, radiation efficiency and directivity pattern with various power law index are analyzed.  相似文献   

20.
The inclined crack problems are considered for a thin strip and a strip with finite thickness in a perpendicular magnetic field. The critical current density is assumed to be a constant. The crack orientation is varied and the effect of crack on the magnetic field distribution is neglected. Based on the analytical results and variational inequality, the field and current distributions are computed for both thin strip and strip with finite thickness cases, respectively. Then, the stress intensity factors at the crack tip are determined using the finite element method for magnetic field loads. The numerical results are presented for different inclined crack angles, magnetization processes and geometry parameters of the strip. The results show that the fracture behavior of the strip with finite thickness is more complicated than that of the thin strip. With the numerical results, we can predict the largest possibility of cracking as the strip is in an external field.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号