首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 546 毫秒
1.
胰蛋白酶和苯酰氨类抑制剂结合自由能的预测   总被引:1,自引:0,他引:1  
用基于线性响应近似的自由能预测方法计算胰蛋白酶和苯酰氨类抑制剂的结合 自由能。计算结果表明,单参数,双参数和三参数模型具有相似的线性回归系数, 但三参数和双参数模型的交互验证回归系数要明显优于单参数模型。从预测能力来 看,双参数模型和三参数模型都能够很好地预测测试集中抑制剂的结合自由能,其 中双参数模型预测的结果要略优于三参数模型的预测结果。对测试集中的抑制剂, 双参数模型预测得到的预测自由能和实际自由能之间平均绝对误差仅为1.15 kJ/mol。自由能计算模型以及分子动力学轨迹能很好地解释抑制剂结构和活性的 关系,为药物设计提供了重要的结构信息。  相似文献   

2.
Binding free energies were calculated for the inhibitors lopinavir, ritonavir, saquinavir, indinavir, amprenavir, and nelfinavir bound to HIV-1 protease. An MMPB/SA-type analysis was applied to conformational samples from 3 ns explicit solvent molecular dynamics simulations of the enzyme-inhibitor complexes. Binding affinities and the sampled conformations of the inhibitor and enzyme were compared between different HIV-1 protease protonation states to find the most likely protonation state of the enzyme in the complex with each of the inhibitors. The resulting set of protonation states leads to good agreement between calculated and experimental binding affinities. Results from the MMPB/SA analysis are compared with an explicit/implicit hybrid scheme and with MMGB/SA methods. It is found that the inclusion of explicit water molecules may offer a slight advantage in reproducing absolute binding free energies while the use of the Generalized Born approximation significantly affects the accuracy of the calculated binding affinities.  相似文献   

3.
As part of the SAMPL5 blinded experiment, we computed the absolute binding free energies of 22 host–guest complexes employing a novel approach based on the BEDAM single-decoupling alchemical free energy protocol with parallel replica exchange conformational sampling and the AGBNP2 implicit solvation model specifically customized to treat the effect of water displacement as modeled by the Hydration Site Analysis method with explicit solvation. Initial predictions were affected by the lack of treatment of ionic charge screening, which is very significant for these highly charged hosts, and resulted in poor relative ranking of negatively versus positively charged guests. Binding free energies obtained with Debye–Hückel treatment of salt effects were in good agreement with experimental measurements. Water displacement effects contributed favorably and very significantly to the observed binding affinities; without it, the modeling predictions would have grossly underestimated binding. The work validates the implicit/explicit solvation approach employed here and it shows that comprehensive physical models can be effective at predicting binding affinities of molecular complexes requiring accurate treatment of conformational dynamics and hydration.  相似文献   

4.
Understanding binding mechanisms between enzymes and potential inhibitors and quantifying protein – ligand affinities in terms of binding free energy is of primary importance in drug design studies. In this respect, several approaches based on molecular dynamics simulations, often combined with docking techniques, have been exploited to investigate the physicochemical properties of complexes of pharmaceutical interest. Even if the geometric properties of a modeled protein – ligand complex can be well predicted by computational methods, it is still challenging to rank with chemical accuracy a series of ligand analogues in a consistent way. In this article, we face this issue calculating relative binding free energies of a focal adhesion kinase, an important target for the development of anticancer drugs, with pyrrolopyrimidine‐based ligands having different inhibitory power. To this aim, we employ steered molecular dynamics simulations combined with nonequilibrium work theorems for free energy calculations. This technique proves very powerful when a series of ligand analogues is considered, allowing one to tackle estimation of protein – ligand relative binding free energies in a reasonable time. In our cases, the calculated binding affinities are comparable with those recovered from experiments by exploiting the Michaelis – Menten mechanism with a competitive inhibitor.  相似文献   

5.

Abstract  

It is a new and promising strategy for anticancer drug design to block the MDM2-p53 interaction using a non-peptide small-molecule inhibitor. We carry out molecular dynamics simulations to study the binding of a set of six non-peptide small-molecule inhibitors with the MDM2. The relative binding free energies calculated using molecular mechanics Poisson–Boltzmann surface area method produce a good correlation with experimentally determined results. The study shows that the van der Waals energies are the largest component of the binding free energy for each complex, which indicates that the affinities of these inhibitors for MDM2 are dominated by shape complementarity. The A-ligands and the B-ligands are the same except for the conformation of 2,2-dimethylbutane group. The quantum mechanics and the binding free energies calculation also show the B-ligands are the more possible conformation of ligands. Detailed binding free energies between inhibitors and individual protein residues are calculated to provide insights into the inhibitor-protein binding model through interpretation of the structural and energetic results from the simulations. The study shows that G1, G2 and G3 group mimic the Phe19, Trp23 and Leu26 residues in p53 and their interactions with MDM2, but the binding model of G4 group differs from the original design strategy to mimic Leu22 residue in p53.  相似文献   

6.
An iterative, computer-assisted, drug design strategy that combines molecular design, molecular mechanics, molecular dynamics (MD), and free energy perturbation (FEP) calculations with compound synthesis, biochemical testing of inhibitors, and crystallographic structure determination of protein-inhibitor complexes was successfully used to predict the rank order of a series of nucleoside monophosphate analogues as fructose 1,6-bisphosphatase (FBPase) inhibitors. The X-ray structure of FBPase complexed with 5-aminoimidazole-4-carboxamide-1-beta-D-ribofuranosyl 5'-monophosphate (ZMP) provided structural information used for subsequent analogue design and free energy calculations. The FEP protocol was validated by calculating the free energy differences for the mutation of ZMP (1) to AMP (2). The calculated results showed a net gain of 1.7 kcal/mol, which agreed with the experimental result of 1.3 kcal/mol. FEP calculations were performed for 18 other AMP analogues. Inhibition constants were determined for over half of these analogues, usually after completion of the calculation, and were consistent with the predictions. Solvation free energy differences between AMP and various AMP analogues proved to be an important factor in binding free energies, suggesting that increased desolvation costs associated with the addition of polar groups to an inhibitor must be overcome by stronger ligand-protein interactions if the structural modification is to enhance inhibitor potency. The results indicate that FEP calculations predict relative binding affinities with high accuracy and provide valuable insight into the factors that influence inhibitor binding and therefore should greatly aid efforts to optimize initial lead compounds and reduce the time required for the discovery of new drug candidates.  相似文献   

7.
通过分子力学/分子动力学模拟,获得4种游离杯[4]吡咯以及杯[4]吡咯-卤素阴离子主-客体复合物的稳定构象,用偶极子模型解释了β位卤素取代对游离杯[4]吡咯稳定构象、杯[4]吡咯-卤素阴离子复合物的结构及其结合能的影响,指出造成这些影响的主要因素是不同卤素取代导致杯[4]吡咯的吡咯环基团偶极大小不同.计算了不同杯[4]吡咯与卤素阴离子的结合能,当杯[4]吡咯β位上的H原子被卤素阴离子取代后,杯[4]吡咯对阴离子的识别能力加强.  相似文献   

8.
A series of broadly neutralizing antibodies called PGT have been shown to be bound directly to human immunodeficiency virus type-1 via high mannose glycans on glycoprotein gp120. Despite the sequence similarities of amino acids of the antibodies, their affinities to the glycan differ. Glycan–antibody interactions among these antibodies are systematically compared with quantum chemical fragment molecular orbital calculations and molecular dynamics simulations. The differences among structural stability of the glycan in the active site of the complexes and total interaction energies as well as binding free energies between the glycan and antibodies agree well with the experimentally shown affinities of the glycan to the antibodies. The terminal saccharide, Man D3, is structurally stable and responsible for the glycan–antibody binding through electrostatic and dispersion interactions. The structural stability of nonterminal saccharides such as Man 4 or Man C plays substantial roles in the interaction via direct hydrogen bonds. © 2019 Wiley Periodicals, Inc.  相似文献   

9.
10.
In the drug discovery process, accurate methods of computing the affinity of small molecules with a biological target are strongly needed. This is particularly true for molecular docking and virtual screening methods, which use approximated scoring functions and struggle in estimating binding energies in correlation with experimental values. Among the various methods, MM‐PBSA and MM‐GBSA are emerging as useful and effective approaches. Although these methods are typically applied to large collections of equilibrated structures of protein‐ligand complexes sampled during molecular dynamics in water, the possibility to reliably estimate ligand affinity using a single energy‐minimized structure and implicit solvation models has not been explored in sufficient detail. Herein, we thoroughly investigate this hypothesis by comparing different methods for the generation of protein‐ligand complexes and diverse methods for free energy prediction for their ability to correlate with experimental values. The methods were tested on a series of structurally diverse inhibitors of Plasmodium falciparum DHFR with known binding mode and measured affinities. The results showed that correlations between MM‐PBSA or MM‐GBSA binding free energies with experimental affinities were in most cases excellent. Importantly, we found that correlations obtained with the use of a single protein‐ligand minimized structure and with implicit solvation models were similar to those obtained after averaging over multiple MD snapshots with explicit water molecules, with consequent save of computing time without loss of accuracy. When applied to a virtual screening experiment, such an approach proved to discriminate between true binders and decoy molecules and yielded significantly better enrichment curves. © 2009 Wiley Periodicals, Inc. J Comput Chem, 2010  相似文献   

11.
A molecular modelling study using the program GRID has been used to investigate the structural requirements of a potential inhibitor binding to Vibrio cholerae sialidase. A number of favourable interactions were predicted between the sialidase and Neu2en derivatives containing hydroxyl- or halogen-substituted acyl groups on the C-5 amine. As a result of this study, a detailed analysis of the interactions of C-5-substituted Neu2en derivatives with the active site of V. cholerae sialidase was undertaken using a conformational searching routine based on molecular dynamics. Based on the results of these molecular design studies several N-acyl-Neu2en-based probes were prepared and evaluated for sialidase inhibition. As envisaged, and pleasingly, the designed compounds were found to be accommodated by the enzyme’s active site architecture, and to be strong inhibitors of V. cholerae sialidase.  相似文献   

12.
通过分子对接建立了一系列含二氟甲基磷酸基团(DFMP)或二氟甲基硫酸基团(DFMS)的抑制剂与酪氨酸蛋白磷酸酯酶1B(PTP1B)的相互作用模式, 并通过1 ns的分子动力学模拟和molecular mechanics/generalized Born surface area (MM/GBSA)方法计算了其结合自由能. 计算获得的结合自由能排序和抑制剂与靶酶间结合能力排序一致; 通过基于主方程的自由能计算方法, 获得了抑制剂与靶酶残基间相互作用的信息, 这些信息显示DFMP/DFMS基团的负电荷中心与PTP1B的221位精氨酸正电荷中心之间的静电相互作用强弱决定了此类抑制剂的活性, 进一步的分析还显示位于DFMP/DFMS基团中的氟原子或其他具有适当原子半径的氢键供体原子会增进此类抑制剂与PTP1B活性位点的结合能力.  相似文献   

13.
The heat shock protein 90α (HSP90α) provides a promising molecular target for cancer therapy. A series of novel benzolactam inhibitors exhibited distinct inhibitory activity for HSP90α. However, the structural basis for the impact of distinct R1 substituent groups of nine benzolactam inhibitors on HSP90α binding affinities remains unknown. In this study, we carried out molecular docking, molecular dynamics (MD) simulations, and molecular mechanics and generalized Born/surface area (MM–GBSA) binding free energy calculations to address the differences. Molecular docking studies indicated that all nine compounds presented one conformation in the ATP-binding site of HSP90α N-terminal domain. MD simulations and subsequent MM–GBSA calculations revealed that the hydrophobic interactions between all compounds and HSP90α contributed the most to the binding affinity and a good linear correlation was obtained between the calculated and the experimental binding free energies (R = 0.88). The per residue decomposition revealed that the most remarkable differences of residue contributions were found in the residues Ala55, Ile96, and Leu107 defining a hydrophobic pocket for the R1 group, consistent with the analysis of binding modes. This study may be helpful for the future design of novel HSP90α inhibitors.  相似文献   

14.
The linear finite difference Poisson-Boltzmann (FDPB) equation is applied to the calculation of the electrostatic binding free energies of a group of inhibitors to the Neuraminidase enzyme. An ensemble of enzyme-inhibitor complex conformations was generated using Monte Carlo simulations and the electrostatic binding free energies of subtly different configurations of the enzyme-inhibitor complexes were calculated. It was seen that the binding free energies calculated using FDPB depend strongly on the configuration of the complex taken from the ensemble. This configurational dependence was investigated in detail in the electrostatic hydration free energies of the inhibitors. Differences in hydration energies of up to 7 kcal mol–1 were obtained for root mean square (RMS) structural deviations of only 0.5 Å. To verify the result, the grid size and parameter dependence of the calculated hydration free energies were systematically investigated. This showed that the absolute hydration free energies calculated using the FDPB equation were very sensitive to the values of key parameters, but that the configurational dependence of the free energies was independent of the parameters chosen. Thus just as molecular mechanics energies are very sensitive to configuration, and single-structure values are not typically used to score binding free energies, single FDPB energies should be treated with the same caution.  相似文献   

15.
应用了一种新的预测酶-配体复合物亲和性的方法来研究凝血酶抑制的结构-活性关系。凝血酶-抑制剂复合物的三维结构模板化合物的晶体结构进行搭建,然后使用程序SCORE计算复合物的亲和性。共分析了3个系列34个抑制剂分子。计算所得的复合物的解离常数与实验值吻合得很好,大大优于用分子力学所给出的结果。通过比较其中两个抑制分子的结构和活性,说明了此方法能够定量给出配体分子中每个原子对结合过程的贡献大小,给出十  相似文献   

16.
A recently developed method for predicting binding affinities in ligand–receptor complexes, based on interaction energy averaging and conformational sampling by molecular dynamics simulation, is presented. Polar and nonpolar contributions to the binding free energy are approximated by a linear scaling of the corresponding terms in the average intermolecular interaction energy for the bound and free states of the ligand. While the method originally assumed the validity of electrostatic linear response, we show that incorporation of systematic deviations from linear response derived from free energy perturbation calculations enhances the accuracy of the approach. The method is applied to complexes of wild-type and mutant human dihydrofolate reductases with 2,4-diaminopteridine and 2,4-diaminoquinazoline inhibitors. It is shown that a binding energy accuracy of about 1 kcal/mol is attainable even for multiply ionized compounds, such as methotrexate, for which electrostatic interactions energies are very large. © 1998 John Wiley & Sons, Inc. Int J Quant Chem 69: 77–88, 1998  相似文献   

17.
A group of agonists for the alpha7 neuronal nicotinic acetylcholine receptors (nAChRs) was investigated, and their free energies of binding DeltaG(bind) were calculated by applying the molecular mechanics Poisson-Boltzmann surface area (MM-PBSA) approach. This method, based on molecular dynamics simulations of fully solvated protein-ligand complexes, allowed us to estimate the contribution of both polar and nonpolar terms as well as the entropy to the overall free energy of binding. The calculated results were in a good agreement with the experimentally determined DeltaG(bind) values, thereby pointing to the MM-PBSA protocol as a valuable computational tool for the rational design of specific agents targeting the neuronal alpha7 nAChR subtypes.  相似文献   

18.
19.
We have performed a systematic study of the entropy term in the MM/GBSA (molecular mechanics combined with generalized Born and surface-area solvation) approach to calculate ligand-binding affinities. The entropies are calculated by a normal-mode analysis of harmonic frequencies from minimized snapshots of molecular dynamics simulations. For computational reasons, these calculations have normally been performed on truncated systems. We have studied the binding of eight inhibitors of blood clotting factor Xa, nine ligands of ferritin, and two ligands of HIV-1 protease and show that removing protein residues with distances larger than 8-16 ? to the ligand, including a 4 ? shell of fixed protein residues and water molecules, change the absolute entropies by 1-5 kJ/mol on average. However, the change is systematic, so relative entropies for different ligands change by only 0.7-1.6 kJ/mol on average. Consequently, entropies from truncated systems give relative binding affinities that are identical to those obtained for the whole protein within statistical uncertainty (1-2 kJ/mol). We have also tested to use a distance-dependent dielectric constant in the minimization and frequency calculation (ε = 4r), but it typically gives slightly different entropies and poorer binding affinities. Therefore, we recommend entropies calculated with the smallest truncation radius (8 ?) and ε =1. Such an approach also gives an improved precision for the calculated binding free energies.  相似文献   

20.
Molecular docking plays an important role in drug discovery as a tool for the structure-based design of small organic ligands for macromolecules. Possible applications of docking are identification of the bioactive conformation of a protein-ligand complex and the ranking of different ligands with respect to their strength of binding to a particular target. We have investigated the effect of implicit water on the postprocessing of binding poses generated by molecular docking using MM-PB/GB-SA (molecular mechanics Poisson-Boltzmann and generalized Born surface area) methodology. The investigation was divided into three parts: geometry optimization, pose selection, and estimation of the relative binding energies of docked protein-ligand complexes. Appropriate geometry optimization afforded more accurate binding poses for 20% of the complexes investigated. The time required for this step was greatly reduced by minimizing the energy of the binding site using GB solvation models rather than minimizing the entire complex using the PB model. By optimizing the geometries of docking poses using the GB(HCT+SA) model then calculating their free energies of binding using the PB implicit solvent model, binding poses similar to those observed in crystal structures were obtained. Rescoring of these poses according to their calculated binding energies resulted in improved correlations with experimental binding data. These correlations could be further improved by applying the postprocessing to several of the most highly ranked poses rather than focusing exclusively on the top-scored pose. The postprocessing protocol was successfully applied to the analysis of a set of Factor Xa inhibitors and a set of glycopeptide ligands for the class II major histocompatibility complex (MHC) A(q) protein. These results indicate that the protocol for the postprocessing of docked protein-ligand complexes developed in this paper may be generally useful for structure-based design in drug discovery.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号