首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 41 毫秒
1.
The use of inductively coupled plasma atomic emission spectrometry with ultrasonic nebulization (USN-ICP-AES) for determining Ag, Al, As, Ba, Bi, Cd, Co, Cr, Cu, Fe, Hg, Mg, Mn, Ni, Pb, Sb, Sr, V and Zn in complex matrices of Ca, Na, K and P in waste waters is described. Generally, depressions in the analyte emission intensity occur in the presence of concomitants. Matrix interferences can be minimized by increasing the operating power and lowering the carrier gas flow rate. However, the enhancement of the signal-to-background ratios (SBRs) shows an opposite trend. Therefore, routine analyses were performed at a compromise power setting of 1350 W, a carrier gas flow rate of 0.8 L min–1 and an observation height of 14 mm above the load coil and using a matrix matched calibration procedure. Limits of detection (LODs) at chosen operating conditions were at μg L–1 levels for most of the elements studied, including mercury when KBr is added to the analyte solution to enhance sensitivity. LODs were not significantly changed in the presence of matrix elements. Recoveries for the majority of added elements from spiked waste water samples are between 93 and 105% using a matrix matched calibration. Received: 13 January 2000 / Revised: 10 April 2000 / Accepted: 18 April 2000  相似文献   

2.
孙大海  贺柏令 《分析化学》1993,21(5):566-568
本文探讨了不同分析条件下基体干扰效应的分布规律,从消除基体干扰效应角度对ICP-AES操作条件的优化进行了讨论。结果表明,在一般分析条件下,典型基体元素的零干扰点主要出现于10~15mm的观察区域。在此区间仔细选择观察高度,同时结合入射功率、载气流量的调整及加入基体缓冲剂,可以将基体的影响减至最小。  相似文献   

3.
A novel optical configuration for inductively coupled plasma (ICP)-atomic emission spectrometry is presented. Plasma emission is measured axially via the bottom end of the ICP torch. Analytical performance, such as increase in signal-to-background ratio (SBR) over radially viewed ICP and linear dynamic range, is comparable to that of end-on axially viewed ICP reported in the literatures. Under typical ICP operating conditions (forward power=1.0–1.6 kW, central channel gas flow rate=0.8–1.4 l/min), SBR is generally five times or more that of radial-viewing mode (observation heights=3–20 mm) for atomic lines of elements of low to medium ionization potential (Na, K, Sr and Ba). The enhancement factor in SBR is two to four times for ionic lines (e.g. MgII) and atomic lines of elements of high ionization potential (Zn). The influence of ICP forward power and carrier gas flow rate on analyte emission intensity and SBR were also studied. Similar to radially viewed ICP, as forward power increases, the net emission intensity increases and SBR decreases. Using a constant flux of analyte aerosols, the net intensity decreases as the central channel gas flow rate increases. No trend of SBR vs. central channel gas flow rate, however, is found. The linear dynamic range starts and ends at analyte concentration 0.5–1 order of magnitude lower than the corresponding radial-viewing mode. As a result, the span of linear dynamic range is similar for all viewing modes. Matrix effects of K and Ca on atomic lines are different from those reported for end-on axially viewed ICPs, probably due to the difference in the plasma regions that were probed. The matrix effects on ionic lines, however, are similar in magnitude.  相似文献   

4.
We are reporting observations of positive and negative variations of emission line intensities during the determination of boron and titanium in biological matrices by axial view inductively coupled plasma optical emission spectrometry with segmented charge-coupled device detection. The study included the testing of several elements (yttrium, palladium and platinum) and analytical wavelengths for internal standardization, aiming to compensate for variations in signal recovery due to matrix interferences. Human albumin was chosen as principal matrix component to assess the effect of variable chemical and instrumental operating conditions on boron response. A parametric study was performed by considering the application of two different nebulizer–aerosol chamber systems, the effect of plasma operating conditions on analyte and internal standard signals and the influence of common blood plasma electrolytes, added as salts of alkaline or alkaline earth elements. The pneumatic injection systems tested were a standard cross-flow nebulizer with a Scott type spray chamber and a concentric Meinhard type device coupled to a glass cyclonic spray chamber. The change from standard (i.e. medium RF power and relatively high aerosol carrier gas flow rate) to robust (i.e. higher RF power and lower carrier gas flow rate) conditions contributed to large, non-correlated variations in boron intensities and in some of the analyte/internal standard ratios. Significant memory effects were observed for injection of boron solutions prepared with boric acid and containing small amounts of acid, but those effects were negligible when the boron carrier compound was boronophenylalanyne. The injection of titanium solutions did not produce analyte carry-over effects. When internal standards were employed, a less effective signal compensation was consistently observed for boron at higher albumin concentrations when the difference in energies of the lines was between 4.5 and 6 eV. This effect was enhanced for some line pairs when robust conditions are employed. Differences in the response between nebulizers were minor, with a slight advantage in sensitivity for the cross-flow/Scott system. Yttrium was found to be useful for signal compensation in the determination of boron and titanium in blood and human plasma provided that the equivalent concentration of albumin in the nebulized sample dilutions was kept below 0.2% w/v. Simultaneous measurement of a reference strontium line was found to be useful as an additional verification of the response of yttrium as internal standard.  相似文献   

5.
An experimental design procedure was applied to optimize the operating conditions of an axially-viewed inductively coupled plasma emission spectrometer instruments equipped with echelle optics with cross dispersion and charge transfer device. The multivariate effect of carrier gas flow rate and r.f. power on several analytical figures was investigated and discussed. Both ultrasonic and pneumatic nebulization were used. For the final choice of the optimum, different criteria were taken into account, mainly plasma robustness, instrumental precision, analyte and background net emission, detection limits and signal-to-background ratios. It was found that the use of moderate power (1100W) and mean carrier gas flow rate (0.75 L/min) allows to obtain sufficient plasma robustness, satisfactory precision, and excellent signal-to-background ratios and limits of detection, favorable for ultratrace element determinations in environmental matrices.  相似文献   

6.
The dependence of analyte sensitivity and vaporization efficiency on the operating parameters of an inductively coupled plasma mass spectrometer (ICPMS) was investigated for a wide range of elements in aerosols, produced by laser ablation of silicate glass. The ion signals were recorded for different carrier gas flow rates at different plasma power for two different laser ablation systems and carrier gases. Differences in atomization efficiency and analyte sensitivity are significant for the two gases and the particle size distribution of the aerosol. Vaporization of the aerosol is enhanced when helium is used, which is attributed to a better energy-transfer from the plasma to the central channel of the ICP and a higher diffusion rate of the vaporized material. This minimizes elemental fractionation caused by sequential evaporation and reduces diffusion losses in the ICP. The sensitivity change with carrier gas flow variation is dependent on m/z of the analyte ion and the chemical properties of the element. Elements with high vaporization temperatures reach a maximum at lower gas flow rates than easily vaporized elements. The sensitivity change is furthermore dependent on m/z of the analyte ion, due to the mass dependence of the ion kinetic energies. The mass response curve of the ICPMS is thus not only a result of space charge effects in the ion optics but is also affected by radial diffusion of analyte ions and the mismatch between their kinetic energy after expansion in the vacuum interface and the ion optic settings.  相似文献   

7.
ICP—AES中基体及操作条件对元素电离度的影响   总被引:2,自引:0,他引:2  
本文测定了Ca、Cd、Mg、Mn、Zn5种元素电离度在1CP中的垂直空间分布,观察了基体元素及操作条件(正向功率与载气流量)对电离度的影响,结果表明,元素的电离度与ICP的激发特性没有直接的联系;基体元素及操作条件对电离度影响很小。  相似文献   

8.
Self-absorption effects leading to curvatures of the upper part of calibration graphs were investigated in multichannel detection ICP-AES. A dual view Optima 3000 ICP system was used to enable the simultaneous determination of 38 lines for both radial and axial viewing. Resonance and non-resonance lines were selected for both atomic and ionic lines. The concentrations of 22 standards were in the range 0.1-100 mg L(-1) and two sets of operating conditions, namely power and carrier gas flow rate, were used to evaluate their influence. It was found that these two conditions, and in particular the carrier gas flow rate, play a major role in self-absorption effects. Except for strongly absorbing lines, it was possible, under suitable conditions, to reduce or to suppress differences between self-absorption effects in radial and axial viewing, enabling extension of the range of linearity of axial viewing to higher concentrations. A diagnostic tool, based on emission line ratios, is proposed for detection of self-absorption. A calibration procedure is given for strongly absorbing lines affected by self-absorption even when operating conditions were optimized.  相似文献   

9.
A study is performed on a radio-frequency glow-discharge atomic-emission (rf-GD-AES) source to determine the factors effecting the emission yields for both metallic and nonconductive sample types. Specifically, these studies focus on determining how the operating parameters (power and pressure) influence emission yields. The results follow predicted patterns as determined by Langmuir probe diagnostic studies of a similar source. In particular, discharge gas pressure is the key operating parameter as slight changes in pressure may significantly affect the emission yield of the analyte species. RF power is less important and is shown to produce only relatively small changes in the emission yield over the ranges typically used in rf-GD analyses. These studies indicate that the quantitative analysis of layered materials, depth-profiling, may be adversely affected if the data collection scheme, i.e. the quantitative algorithm, requires changing the pressure during an analysis to keep the operating current and voltage constant. A direct relationship is shown to exist between the Ar (discharge gas) emission intensity and that of sputtered species for nonconductors. This observance is used to compensate for differences in emission intensities observed in the analysis of various thickness nonconductive samples. The sputtered element emission signals are corrected based on the emission intensity of an Ar (1) transition, implying that quantitative analysis of nonconductive samples is not severely limited by the availability of matrix matched standards. © 1997 Elsevier Science B.V.  相似文献   

10.
The novel analytical application of the combination of an inline electrothermal vaporization (ETV) and nebulization source for inductively coupled plasma mass spectrometry (ICP-MS) has been studied. Wet plasma conditions are sustained during ETV introduction by 200 mL/min gas flow through the nebulizer, which is merged with the ETV transport line at the torch. The use of a wet plasma with ETV introduction avoided the need to change power settings and torch positions that normally accompany a change from wet to dry plasma operating conditions. This inline-ETV source is shown to have good detection limits for a variety of elements in both HNO3 and HCl matrices. Using the inline-ETV source, improved limits of detection (LOD) were obtained for elements typically suppressed by polyatomic interferences using a nebulizer. Specifically, improved LODs for 51V and 53Cr suffering from Cl interferences (51ClO+ and 53ClO+ respectively) in a 1% HCl matrix were obtained using the inline-ETV source. LODs were improved by factors of 65 and 22 for 51V and 53Cr, respectively, using the inline-ETV source compared to a conventional concentric glass nebulizer. For elements without polyatomic interferences, LODs from the inline-ETV were comparable to conventional dry plasma ETV-ICP time-of-flight mass spectrometry results. Lastly, the inline-ETV source offers a simple means of changing from nebulizer introduction to inline-ETV introduction without extinguishing the plasma. This permits, for example, the use of the time-resolved ETV-ICP-MS signals to distinguish between an analyte ion and polyatomic isobar.  相似文献   

11.
端视等离子体原子发射光谱法中内标法校正钠基体干扰   总被引:1,自引:0,他引:1  
汪正  陈天裕  张蓓红  吴显欣 《分析化学》2002,30(10):1222-1225
端视电感耦合等离子体原子发射光谱在分析过程中易电离元素引起的非光谱干扰 ,常常使分析结果产生偏差。就不同浓度Na基体对分析谱线产生的干扰进行了实验和研究 ,并用Y作为内标元素来补偿钠基体的干扰。得出在Robust条件 ,即高功率和低载气流速条件下 ,选择合适的离子线 ,并且离子线的总能量大于 10eV下 ,用内标Y 4 37.4 94nm可以很好的补偿不同Na含量的干扰。  相似文献   

12.
Radial viewing 40.68 MHz inductively coupled plasma atomic emission spectrometer was used in the determination of Y, Sc and rare earth elements in Eu2O3 or Lu2O3 as pure rare earth matrices. The Mg II 280.270 nm/Mg I 285.213 nm line intensity ratio was measured to evaluate the robustness of the operating conditions. The operating conditions were affected by varying the incident power and sheathing gas flow rate. The carrier gas flow rate remained a constant value. The relationship between the Mg II 280.270 nm/Mg I 285.213 nm ratio and the excitation temperature was obtained. A dependence of the magnesium ratio in the pure solvent and the corresponding values in the presence of the above matrices was established.  相似文献   

13.
A solid-phase microextraction (SPME) and gas chromatography-mass spectrometry method for determining polycyclic aromatic hydrocarbons (PAHs) in environmental solid matrices is developed. Investigated matrices include seaweed (Undaria pinnatifida and Himanthalia elongata), humic substances (isolated from a wetland out-flow and purchased from Aldrich), and soil. Optimal conditions for a good SPME efficiency of 16 hydrocarbon compounds are obtained using a 100- micro m polydimethylsiloxane fiber directly immersed in aqueous carrier medium. The method is remarkable for presenting short extraction times and considerably high sensitivities. The SPME results obtained by using internal calibration give the total analyte concentration based on the identical partitioning behavior of native and spiked pollutants. The detection limits range from 0.001 to 0.1 mg of PAH per kilogram of dry matrix. SPME external calibration provides information regarding freely dissolved analytes. The detection limits range from 0.001 to 0.05 micro g of PAH per liter of carrier medium. The SPME with external calibration procedure can be applied to measure free concentrations of a target compound spiked into a carrier medium and onto a matrix. Based on a comparison of results obtained for the two samples, the partitioning of the target analyte between the matrix and the carrier medium is calculated.  相似文献   

14.
Laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS) has been established as a powerful and sensitive surface analytical technique for the determination of concentration and distribution of trace metals within biological systems at micrometer spatial resolution. LA-ICP-MS allows easy quantification procedures if suitable standard references materials (SRM) are available. In this work a new SRM-free approach of solution-based calibration method in LA-ICP-MS for element quantification in hair is described. A dual argon flow of the carrier gas and nebulizer gas is used. A dry aerosol produced by laser ablation (LA) of biological sample and a desolvated aerosol generated by pneumatic nebulization (PN) of standard solutions are carried by two different flows of argon as carrier or nebulizer gas, respectively and introduced separately in the injector tube of a special ICP torch, through two separated apertures. Both argon flows are mixed directly in the ICP torch. External calibration via defined standard solutions before analysis of single hair was employed as calibration strategy. A correction factor, calculated using hair with known analyte concentration (measured by ICP-MS), is applied to correct the different elemental sensitivities of ICP-MS and LA-ICP-MS. Calibration curves are obtained by plotting the ratio of analyte ion M+/34S+ ion intensities measured using LA-ICP-MS in dependence of analyte concentration in calibration solutions. Matrix-matched on-line calibration in LA-ICP-MS is carried out by ablating of human hair strands (mounted on a sticky tape in the LA chamber) using a focused laser beam in parallel with conventional nebulization of calibration solutions. Calibrations curves of Li, Na, Mg, Al, K, V, Cr, Mn, Fe, Ni, Co, Cu, Zn, Sr, Mo, Ag, Cd, I, Hg, Pb, Tl, Bi and U are presented. The linear correlation coefficients (R) of calibration curves for analytes were typically between 0.97 and 0.999. The limits of detection (LODs) of Li, V, Mn, Ni, Co, Cu, Sr, Mo, Ag, Ba, Cd, I, Hg, Pb, Bi and U in a single hair strand were in the range of 0.001-0.90 μg g−1, whereas those of Cr and Zn were 3.4 and 5.1 μg g−1, respectively. The proposed quantification strategy using on-line solution-based calibration in LA-ICP-MS was applied for biomonitoring (the spatial resolved distribution analysis) of essential and toxic metals and iodine in human hair and mouse hair.  相似文献   

15.
Self-absorption effects leading to curvatures of the upper part of calibration graphs were investigated in multichannel detection ICP–AES. A dual view Optima 3000 ICP system was used to enable the simultaneous determination of 38 lines for both radial and axial viewing. Resonance and non-resonance lines were selected for both atomic and ionic lines. The concentrations of 22 standards were in the range 0.1–100 mg L–1 and two sets of operating conditions, namely power and carrier gas flow rate, were used to evaluate their influence. It was found that these two conditions, and in particular the carrier gas flow rate, play a major role in self-absorption effects. Except for strongly absorbing lines, it was possible, under suitable conditions, to reduce or to suppress differences between self-absorption effects in radial and axial viewing, enabling extension of the range of linearity of axial viewing to higher concentrations. A diagnostic tool, based on emission line ratios, is proposed for detection of self-absorption. A calibration procedure is given for strongly absorbing lines affected by self-absorption even when operating conditions were optimized.  相似文献   

16.
IntroductionIn the past decades, alkali metals were widely ap-plied in many fields, such as applied catalysis[1,2],surface science[3,4], and molecular biology[5]. Micro-wave plasma torch(MPT), developed and improved byYu and coworkers[6,7], is a novel dev…  相似文献   

17.
MPT-AES法同时测定航空润滑油中铁、银和镍   总被引:1,自引:0,他引:1  
用微波等离子体炬原子发射光谱法(MPT-AES)同时测定未使用过的航空润滑油中铁、银和镍的方法。详细考察了微波功率、载气流量、工作气流量、氧屏蔽气压力等实验参数对铁、银和镍发射强度的影响,并进行了系统优化。测得铁、银和镍的检出限分别为21.94ng/mL0、.36ng/mL9、.82ng/mL,线性范围分别为0.1~100μg/mL、0.001~8μg/mL、0.05~8μg/mL,各元素测定结果的相对标准偏差均小于3.95%,回收率在93.1%~107.4%之间。  相似文献   

18.
Particle beam hollow cathode optical emission spectroscopy (PB/HC-OES) is evaluated as a generic tool for total protein determinations by monitoring the carbon atomic emission (C (I) 193.0 nm) resultant from dissociated analyte species. Previous studies demonstrated the capability of the PB/HC-OES system for total protein determinations with limits of detection for bovine serum albumin (BSA) samples being at the single-nanogram level for 200 l injections. Non-linear behavior across the concentration range in the calibration curve was observed due to the poor transport of small particles (owing to low analyte concentrations) through the PB interface. The potential use of non-volatile salts as carrier agents is investigated in the determination of protein samples by PB/HC-OES. A range of chloride salts (different cations), potassium salts (different anions), and an organic modifier (ammonium acetate) is investigated here for possible use as carriers upon addition as sample injection matrices for protein samples. The analyte response curves of BSA samples with KCl added as the sample injection matrix show higher sensitivity, better linearity (R2) and subsequently lower detection limits in comparison to those obtained with water, HCl, KNO3 or ammonium acetate as carrier matrices.  相似文献   

19.
In this work, the determination of 11 pesticides (pirimicarb, metalaxyl, pyrimethanil, procymidone, nuarimol, azoxystrobin, tebufenozide, fenarimol, benalaxyl, penconazole, and tetradifon) in rose wines by micellar EKC (MEKC) using reversed electrode polarity stacking mode (REPSM) as online preconcentration strategy is described. The MEKC buffer consisted of 100 mM sodium tetraborate and 30 mM SDS at pH 8.5 with 6% v/v 1-propanol. A solid-phase microextraction (SPME) procedure using PDMS/divinylbenzene (PDMS/DVB) fibers was applied to extract the selected pesticides from the rose wine samples. The comparison between the calibration curves obtained from hydroalcoholic solutions (12% v/v ethanol) and from rose wines (matrix matched calibration) showed the existence of a strong matrix effect. Furthermore, a comparison with calibration curves obtained with white wine samples also showed significant differences for most of the analyzed pesticides. As a result, a matrix matched calibration was developed. Quantitative extraction from spiked wine samples was carried out in triplicate at two levels of concentration (range 0.18-6.00 mg/L). LODs between 0.040 and 0.929 mg/L were achieved, which are below the maximum residue limits (MRLs) established for wine grapes (except for pirimicarb) by the EU and Spain legislation as well as by the Codex Alimentarius. The established method - which is solvent free, cost effective, and fast - was also applied to the analysis of several homemade rose wine samples and a commercial one. Two of the selected pesticides were found in some of the analyzed samples.  相似文献   

20.
Nowadays, multiresidue methods for pesticides monitoring in food commodities are commonly employed. It is also well known that the presence of several compounds from the matrix introduces a bias during the detection and the quantification steps. The so-called matrix effect phenomenon is related to the masking or formation of active sites. In GC, this phenomenon occurs in the injector port, and in the separative system (retention gap and/or analytical column) and also causes ionization potential modification of analytes. The main consequence of matrix effect is an increasing or decreasing analyte signal in the presence of the matrix (real sample) in respect to the same analyte in solvent (standard solution). In standard mixture, pesticides themselves interact with the active present sites among analytical chain from injector to the detector. Some matrix components, sometimes at trace amounts, are inevitably present in analyzed samples even after numerous and diverse clean-up procedures. In this paper, the influence of some analytical parameters on pesticide signal response is explored using gas chromatography with ion-trap mass-selective detection (GC-IT-MS). Moreover, the responses of characteristic troublesome analytes are analyzed in various kinds of matrices. Finally, matrix compound identification is initiated to study analyte-matrix relationship. Sample acidification with 0.1% acetic acid was the most appropriate for the majority of pesticides, while 0.1% formic acid was more suitable for base-sensitive ones (amitraz, imazalil, thiabendazole). Among tested calibration methods, matrix matched calibration provides the best results. In green bean matrix model, a matrix/pesticide ratio of 1/1 induces the best detected signal for almost every investigated analytes. Presence and quantity of some identified matrix co-extracted compounds like sterols could be partially a cause of signal enhancement.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号