首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The complex [Ru(II)(dcbpyH2)(bdmpp)NCS](PF6) (1) (where dcbpyH2 is 2,2′-bipyridine-4,4′-dicarboxylic acid, bdmpp is 2,6-bis(3,5-dimethyl-N-pyrazoyl)pyridine,) is synthesized and characterized extensively by 1H NMR and 13C NMR 1D and 2D, mass spectroscopy, cyclic voltammetry, electronic absorption spectroscopy and IR. The half-wave potential of the Ru(II)/Ru(III) redox couple was measured at E1/2=+0.795 V versus Ag/AgCl in CH3CN. The complex presents three intense metal-to-ligand charge transfer (MLCT) (dM→πL*) absorption bands centered at 383 (=21 300 M−1 cm−1), 432 (=22 400 M−1 cm−1) and 475 nm (=23 400 M−1 cm−1), respectively. The absorbance is extremely strong between 400 and 500 nm and even at 620 nm, the extinction coefficient is still high (=3768 M−1 cm−1). The strong π-acceptor property of the trans-isothiocyanate ligand compared with the Cl ligand is probably the cause of the blue-shift observed in complex 1. These properties make the complex potentially promising for the photosensitization process. The incorporation of TiO2 photoelectrodes derivatized with this complex into a solar cell using a composite polymer/inorganic oxide solid-state electrolyte confirmed its sensitizing ability. Incident monochromatic photon-to-current conversion efficiency (IPCE) values of about 30% and overall energy conversion efficiency (η) of 1.7% were obtained.  相似文献   

2.
The sol-gel synthesis route, in combination with dip-coating deposition, was used for the preparation of FeVO4 films. TEM measurements of Fe/V (1 : 1)-oxide films heated at 400°C reveal that the films consist of a triclinic FeVO4-I and an orthorhombic FeVO4-II phases with a grain size of up to 50 nm. The electrochromic properties of the films were tested in 1 M LiClO4/propylene carbonate (PC) using various electrochemical techniques and in-situ UV-visible spectroelectrochemical measurements. The best compromise between the charge capacity per film thickness (Qd–1 = –0.14 mC cm–2 nm–1), electrochemical stability (>1000 cycles) and optical modulation (Tvis = 0.15) was achieved in the potential range of 4.80 to 1.80 V vs. Li, which suggests that FeVO4 films can be used as counter-electrodes in electrochromic devices.Extensive IR-spectroscopy studies of FeVO4 films in charged/discharged states revealed the following spectra changes: (i) small charging (–0.01 mC cm–2 nm–1) leads to a variation in the intensity of all the vibrational bands without shifting their frequencies, (ii) higher chargings bring about the intensity and frequency changes of bridging V—O···Fe and V···O···Fe stretchings showing that vanadium, and probably also iron, are involved in the insertion/extraction processes, (iii) below 500 cm–1 broad absorption appears due to the Li+—O modes, which also remained in the IR spectra of discharged (bleached) states revealing the irreversible lithiation, and (iv) charging to –0.30 and –0.50 mC cm–2 nm–1 leads to the amorphisation of the film structure.  相似文献   

3.
Raman spectroscopy and Electron Paramagnetic Resonance (EPR) studies were performed on a series of V2O5/TiO2 catalysts prepared by a modified sol-gel method in order to identify the vanadium species. Two species of surface vanadium were identified by Raman measurements, monomeric vanadyls and polymeric vanadates. Monomeric vanadyls are characterized by a narrow Raman band at 1030 cm–1 and polymeric vanadates by two broad bands in the region from 900 to 960 cm–1 and 770 to 850 cm–1. The Raman spectra do not exhibit characteristic peaks of crystalline V2O5. These results are in agreement with those of X-ray Diffractometry (XRD) and Fourier Transform Infrared (FT-IR) previously reported (C.B. Rodella et al., J. Sol-Gel Sci. Techn., submitted). At least three families of V4+ ions were identified by EPR investigations. The analysis of the EPR spectra suggests that isolated V4+ ions are located in sites with octahedral symmetry substituting for Ti4+ ions in the rutile structure. Magnetically interacting V4+ ions are also present as pairs or clusters giving rise to a broad and structureless EPR line. At higher concentration of V2O5, a partial oxidation of V4+ to V5+ is apparent from the EPR results.  相似文献   

4.
The oxygen ions of the β-VOPO4 catalyst were exchanged with an tracer by a reduction–oxidation method and by a catalytic oxidation of but-1-ene using 2. The bands at 992 and 900 cm−1 were more shifted to lower frequencies than those at 1076 and 1002 cm−1. Applying the correlation between the Raman bands and stretching vibrations in the literature, the exchanged oxygen species were estimated. The results suggest that the P–O–V vacancies corresponding to 992 and 900 cm−1 were responsible for reoxidation and the V=O oxygen corresponding to the 1002 cm−1 band of β-VOPO4 was not. The (VO)2P2O7 was oxidized to β-VOPO4 by O2 above 823 K. The insertion position of oxygen was determined at the bands at 992 and 900 cm−1 of β-VOPO4 using 2, which is the same as the exchanged position.  相似文献   

5.
The basic copper arsenate mineral strashimirite Cu8(AsO4)4(OH)4·5H2O from two different localities has been studied by Raman spectroscopy and complemented by infrared spectroscopy. Two strashimirite mineral samples were obtained from the Czech (sample A) and Slovak (sample B) Republics. Two Raman bands for sample A are identified at 839 and 856 cm−1 and for sample B at 843 and 891 cm−1 are assigned to the ν1 (AsO43−) symmetric and the ν3 (AsO43−) antisymmetric stretching modes, respectively. The broad band for sample A centred upon 500 cm−1, resolved into component bands at 467, 497, 526 and 554 cm−1 and for sample B at 507 and 560 cm−1 include bands which are attributable to the ν4 (AsO43−) bending mode. In the Raman spectra, two bands (sample A) at 337 and 393 cm−1 and at 343 and 374 cm−1 for sample B are attributed to the ν2 (AsO43−) bending mode. The Raman spectrum of strashimirite sample A shows three resolved bands at 3450, 3488 and 3585 cm−1. The first two bands are attributed to water stretching vibrations whereas the band at 3585 cm−1 to OH stretching vibrations of the hydroxyl units. Two bands (3497 and 3444 cm−1) are observed in the Raman spectrum of B. A comparison is made of the Raman spectrum of strashimirite with the Raman spectra of other selected basic copper arsenates including olivenite, cornwallite, cornubite and clinoclase.  相似文献   

6.
Sanidine, a variety of feldspar minerals has been investigated through optical absorption, vibrational (IR and Raman), EPR and NMR spectroscopic techniques. The principal reflections occurring at the d-spacings, 3.2892, 3.2431, 2.9022 and 2.6041 Å confirm the presence of sanidine structure in the mineral. Sanidine shows five prominent characteristic infrared absorption bands in the region 1200–950, 770–720, 590–540 and 650–640 cm−1. The Raman spectrum shows the strongest band at 512 cm−1 characteristic of the feldspar structure, which contains four membered rings of tetrahedra. The UV–vis–NIR absorption spectrum had strong absorption features at 6757, 5780 and 5181 cm−1 due to the combination of fundamental OH– stretching. The bands at 11236 and 8196 cm−1and the strong, well-defined band at (30303 cm−1 attest the presence of Fe2+ and Fe3+, respectively, in the sample. The signals at g = 4.3 and 3.7 are interpreted in terms of Fe3+ at two distinct tetrahedral positions Tl and T2 of the monoclinic crystal structure The 29Si NMR spectrum shows two peaks at −97 and −101 ppm corresponding to T2 and T1, respectively, and one peak in 27Al NMR for Al(IV).  相似文献   

7.
The far-infrared spectra (350–35 cm–1) of gaseous ethyl methyl ether-d 0 and ethyl methyl-d 3-ether have been recorded at a resolution of 0.10 cm–1. For the d 0 species, the fundamental asymmetric torsion of the more stable trans conformer (two methyl moieties are trans to one another) has been observed at 115.40 cm–1 with four upper state transitions falling to lower frequency, whereas, for the gauche form, it has been observed at 93.56 cm–1 with two excited states falling to lower frequency. the corresponding series for the d 3 species start from 106.00 and 87.10 cm–1, respectively. From these data, the asymmetric torsional potential coefficients for the d 0 species have been determined to be: V 1 = 572 ± 30; V 2 = 85 ± 8; V 3 = 619 ± 30; V 4 = 175 ± 18, and V 6 = –28 ± 3 cm–1. The trans to gauche and gauche to gauche barriers were calculated to be 958 cm–1 (11.5 kJ/mol) and 631 cm–1 (7.55 kJ/mol), respectively, with an energy difference of 550 ± 6 cm–1 (6.58 ± 0.07 kJ/mol). Utilizing three conformer pairs, variable temperature studies (–105 to –150°C) of the infrared spectra of the d 0 sample dissolved in liquid krypton gave an enthalpy difference of 547 ± 28 cm–1 (6.54 ± 0.33 kJ/mol) with the trans conformer the more stable rotamer. It is estimated that there is only 4% of the gauche conformer present at ambient temperatures. The structural parameters, conformational stabilities, barriers to internal rotation, and fundamental vibrational frequencies, which have been determined experimentally, are compared to those obtained from ab initio gradient predictions from RHF/6-31G* and with full electron correlation at the MP2 level with three different basis sets. The adjusted r 0 structural parameters have been obtained for the trans conformer from combined ab initio MP2/6-311+G** predictions and previously reported microwave rotational constants. The reported distances should be accurate to 0.003 Å and the angles to 0.5°. These results are compared to the corresponding quantities obtained for some similar molecules.  相似文献   

8.
Mössbauer spectra of the Fe1+xV2−xO4 spinel solid solutions are taken to investigate the cation distribution. Room temperature spectra can be interpreted by assuming that the cation distribution is represented approximately as Fe2+[Fe3+xV3+2−x]O4 for 0 x 0.35 and Fe3+[Fe2+Fe3+x−1V3+2−x]O4 for 1 x 2 and the ionic valence arrangement changes from the 2-3-3 type (Fe2+[Fe3+xV3+2−x]O4) to the 3-2-3 one (Fe3+[Fe2+V3+]O4) in the range 0.35 x 1. Fe2VO4 is found to be 3-2-3 spinel, Fe3+[Fe2+V3+]O4. Its paramagnetic spectrum at 473°K is, however, composed of a broad single line with isomer shift value of 0.61 mm/sec relative to stainless steel, in which the line splitting due to the ferric and ferrous ions is rendered indistinguishable.  相似文献   

9.
The temporal behavior of infrared spectra obtained during NO adsorption on oxidized and reduced Fe-ZSM-5 at –100, 0°C, and ambient temperature is reported. The band assignment is made based on the adsorption of labeled molecules. Bands near 1838 and 1886 cm–1 (mononitrosyl Fe2+(NO) species) form quickly and remain invariant. Bands at 1922 and 1813 cm–1 (dinitrosyl Fe2+(NO)2) together with a band at 1750 cm–1 (another mononitrosyl species) gradually become more intense for hours. Purging with He at 0–500°C leads to a gradual decrease in the intensity of all the bands. Mononitrosyl bands near 1886 and 1838 cm–1 are the most stable. The features of the IR spectra of adsorbed NO suggest the presence of dispersed Fe oxide clusters in the zeolitic pore network in addition to Fe2+ ions in cationic positions of ZSM-5.  相似文献   

10.
IR spectra of 3 normal solutions of 14 different salts [chlorides of Al+++, Be++, Mg++, Ca++, Sr++, Ba++, Zn++, Cd++, Li+, Na+, K+, Rb+, Cs+, N(CH3) 4 + ] in both, 96% H2O+4% D2O and 100% H2O, were measured in the frequency range =2 800–2 100 cm–1. From up to 18 single measurements for each solution the frequencies and halfwidths of the O-D stretching bands of isotopically dilute HDO were determined with high accuracy. Frequencies in the range =2 510–2 529 cm–1 and halfwidths in the range =155–205 cm–1 resulted atT=30°C with standard deviations typical less than ±1 cm–1 and ±4 cm–1, respectively. An almost perfect correlation between the O-D stretching band parameters and the polarizing power of the cations was obtained.Herrn Prof. Dr.A. Neckel, Wien, zum 60. Geburtstag gewidmet.  相似文献   

11.
Several salts containing the complex anions [CuCl 4]= or [CuBr 4]= have heen prepared, and their spectra have been measured and interpreted in terms of ligand-field theory. They exhibit a d-d band with about 8–9000 cm–1, and several well defined charge-transfer bands in the visible and near ultraviolet spectral range. Several experimental facts, supported by theoretical considerations, indicate that the structure of the [CuX 4]= anions is not a truly tetrahedral, but a flattened tetrahedral one, of symmetry D 2d . Details on the course of the endothermic solvolysis reactions which occur in polar organic solvents, and on the probable nature of the solvolysis products are reported and discussed.
Zusammenfassung Mehrere Salze der komplexen Anionen [CuCl 4]2– und [CuBr 4]2– wurden dargestellt, ihre Spektren gemessen und ligandenfeldtheoretisch interpretiert. Die Spektren zeigen eine d d-Bande mit im Gebiet von 8000 bis 9000 cm–1 und mehrere wohldefinierte Elektronenüberführungsbanden im sichtbaren und nahen ultravioletten Spektralbereich. Mehrere experimentelle Befunde, die von theoretischen Überlegungen unterstützt werden, deuten darauf hin, daß die [CuX 4]2/s--Anionen nicht rein tetraedrisch gebaut sind, sondern längs einer zweizähligen Achse gestauchte Tetraeder der Symmetrie D 2d darstellen.Einzelheiten über den Verlauf der endothermen Solvolysereaktionen in polaren organischen Lösungsmitteln und über die wahrscheinlichen Solvolyseprodukte werden mitgeteilt und diskutiert.

Résumé Plusieurs sels des anions complexes [CuCl 4]2– et [CuBr 4]2– ont été préparés et leurs spectres mesurés et interprétés dans le cadre de la théorie du champ des ligands.Ils montrent une bande d d avec dans la région de 8000 à 9000 cm–1 et plusieurs bandes bien définies du type «transfer de charges» dans le visible et l'ultraviolet proche. Plusieurs résultats expérimentaux, soutenus par des considérations théoriques, indiquent que la structure des ions [CuX 4]2– n'est pas celle d'un tétraèdre véritable mais celle d'un tétraèdre déformé, de symétrie D 2d , Des détails sur le cours des réactions endothermiques de solvolyse, qui ont lieu dans les solvants organiques polaires et sur la nature probable des produits de la solvolyse sont rapportés et discutés.
  相似文献   

12.
The surface state of optically pure polydisperse TiO2 (anatase and rutile) was determined by infra-red (IR) spectroscopy analysis in the temperature range of 100–453 K. Anatase A300 spectrum, contrary to rutile R300 one, has a broad three-component absorption band with peaks at 1048, 1137 and 1222 cm−1 in the spectral range of δ(Ti–O–H) deformation vibrations. For rutile R300 we observed a very weak band at 1047 cm−1, and for the thermal treated rutile R900 these bands were not appeared at all. The analysis of temperature dependencies for the mentioned absorption bands revealed the spectral shift of 1222 cm−1 band towards the high frequencies, when the temperature increased, but the spectral parameters of 1137 and 1048 cm−1 bands remained the same. The temperature of 1222 cm−1 band maximum shift was 373–393 K and correlated with DSC data. Obtained results allowed to assign 1222 cm−1 band to the deformation vibrations of OH-groups, bounded to the surface adsorbed water molecules by weak hydrogen bonds (5 kcal/mol). During the temperature growth these molecules desorbed, which also resulted in the intensity decreasing of stretching OH-groups vibration IR-bands at 3420 cm−1. The destruction and desorption of surface water complexes led to Ti–O–H bond strengthening. IR bands at 1137 and 1048 cm−1 were attributed to the stronger bounded adsorbed water molecules, which are also characterized with stretching OH-groups vibration bands at 3200 cm−1. These surface structure were additionally stabilized by hydrogen bonds with the neighbouring TiO2 lattice anions and other OH-groups, and desorbed at higher temperatures.  相似文献   

13.
Dependences of La(III) overall ion mobilities on concentrations of ox2– and tart2– anions of oxalic and tartaric acid in aqueous solutions of 0.01 overall ionic strength and temperature 298.1 K were obtained by direct measurements of electromigration of carrierfree140La-lanthanum(III). Concentration stability constants Kn and individual ion mobilities u i o of oxalate and tartrate complexes of La(III) have been calculated for nitrate and perchlorate electrolytes, respectively: [La(ox)]+, lg K1=5.63(9), u0[La(ox)]+=1.95(15)·10–4 cm2·s–1·V–1; [la(ox)2], lg K2=4.05(19) u0[La(ox)2]=–1.76(20)·10–4 cm2·s–1·V–1; [La(tart)]+, lg K1=4.40(5), u0[La(tart)]+=+1.99(18)·10–4 cm2·s–1·V–1.Results are compared with literature data. Additional, limiting individual La3+ ion mobility was calculated: =+6.9(1)·10–4 cm2·s–1·V–1 for pure water at 298.1 K.  相似文献   

14.
In this contribution the substitution of the central protoporphyrin IX iron complex of horseradish peroxidase by the respective osmium porphyrin complex is described. The direct electrochemical reduction of the Os containing horseradish peroxidase (OsHRP) was achieved at ITO and modified glassy carbon electrodes and in combination with spectroscopy revealed the three redox couples OsIIIHRP/OsIVHRP, OsIVHRP/OsVHRP and OsVHRP/OsVIHRP. The midpoint potentials differ dependent on the electrode material used with E1/2 (OsIII/IV) of − 0.4 V (ITO) and − 0.25 V (GC), E1/2 (OsIV/V) of − 0.16 V (ITO) and + 0.10 V (GC), and E1/2 (OsV/VI)of + 0.18 V (ITO), respectively. Moreover, with immobilised OsHRP the direct electrocatalytic reduction of hydrogen peroxide and tert-butyl hydroperoxide was observed. In comparison to electrodes modified with native HRP the sensitivity of the OsHRP-electrode for tert-butyl hydroperoxide is higher.  相似文献   

15.
Layered crystalline zirconium phenylphosphonate, Zr(O3PC6H5)2, changed its interlamellar distance of 1481 pm after intercalation of n-alkylmonoamines, CH3---(CH2)n---NH2 (n=0–6). The infrared spectra of the precursor host and the corresponding intercalated compounds presented vibrations associated with PO3 groups in the 1163–1039 cm−1 range and additional bands related to C---H stretching bands in the 2950–2850 cm−1 interval were observed after amine insertion. The thermogravimetric curves showed a mass loss assigned to the phenyl group; however, the amine intercalated fraction was not quantitatively determined. A peak in the 31P NMR spectrum centered at −6 ppm for the host was observed. The surface area was 42.0±0.2 m2 g−1 and the scanning electron micrograph gave images consistent with lamellar structural features. The layered compound was calorimetrically titrated with amine in ethanol, requiring three independent operations: (i) titration of matrix with amine, (ii) matrix salvation, and (iii) dilution of the amine solution. From those thermal effects the variation in enthalpy was calculated as: −41±1.00,−33.28±0.50,−34.40±0.80,−10.40±0.40,−12.40±0.42,−16.10±0.08 and −7.0±0.04 kJ mol−1, for n=0–6, respectively. The exothermic enthalpic values reflected a favorable energetic process of amine–host intercalation in ethanol. The negative Gibbs free energy results supported the spontaneity of all these intercalation reactions. The positive favorable entropic values, as carbon chain size increased, are in agreement with the free solvent molecules in the medium, as the amines are progressively bonded to the crystalline lamellar inorganic matrix at the solid/liquid interface.  相似文献   

16.
Near-infrared (NIR), X-ray diffraction (XRD) and infrared (IR) spectroscopy have been applied to hydrotalcites of the formula Mg6 (Fe,Al)2(OH)16(CO3)·4H2O formed by intercalation with the carbonate anion as a function of divalent/trivalent cationic ratio. Such hydrotalcites were found to show variation in the d-spacing attributed to the size of the cation. In the IR (1750–4000 cm−1), the position of all bands except those at approximately 3060 cm−1 shift to higher wavenumbers as the cation ratio increases. Conversely, at wavenumbers below 1000 cm−1, the bands shift to lower wavenumbers as the cation ratio increases. A water bending mode at higher wavenumbers was also observed which indicates that the water is strongly hydrogen bonded. In the NIR spectrum between 8000 and 12,000 cm−1, there is a broad feature which is attributed to electronic bands of the ferrous ion and low intensity sharp bands due to overtones of the OH stretching vibrations. It is also apparent from this region that Fe2+ substitutes for Mg2+. The intensity of bands at 7750 and 5200 cm−1 increases as the cation ratio increases in the NIR spectrum. Hydrotalcites with a magnesium amount 3 and 4 times greater than that of aluminium and iron combined, in the lower wavenumber region of the NIR spectrum, have very similar spectral profiles. This work has shown that hydrotalcites with different divalent/trivalent ratios can be synthesised and characterised by infrared spectroscopy.  相似文献   

17.
A dense perovskite hollow fiber made of BaCoxFeyZrzO3−δ (BCFZ) was evaluated for the oxygen separation at low temperatures (400–500 °C). An oxygen permeation flux of 0.45 ml/min cm2 was obtained at 500 °C, which is the first oxygen permeation data reported at such low temperature so far. A degradation of the oxygen permeation at 500 °C was observed, but the oxygen fluxes through the hollow fiber membrane can be regenerated by thermal treatment at 925 °C for 1 h in air. Energy-dispersive X-ray spectroscopy (EDXS) shows that a strong element segregation occurs in the membrane during operation at low temperature.  相似文献   

18.
The N2 and H2 evolution, respectively, were monitored during deposition of Pd and Cu from electroless plating baths to obtain in-process control of the composition during preparation of 3–7 μm thick PdCu membranes on tubular ceramic substrates. Compositions estimated by gas evolution compare favorably to those measured in post-mortem XRD and EDS analyses, mostly differing by not more than 1 at.%. This result suggests that use of gas evolution measurements to enable in-process control of composition to within 1 at.% is feasible. Annealing experiments in an H2 atmosphere demonstrated that, at 893 K, only 48 h are needed to form a stoichiometrically homogeneous, 9.5 μm thick, face centered cubic (fcc) Pd63Cu37 membrane from sequentially deposited layers; at 723 K, the same transformation requires over 2 weeks. The appearance of transient body centered cubic (bcc) and fcc phases with lower Pd contents signaled compositional segregation in the initial stages of alloy formation at 723 and 773 K and could be a source of persistent stoichiometric heterogeneity particularly in bcc PdCu membranes. The H2 fluxes of fcc Pd58Cu42 and Pd70Cu30 membranes were JH2=(1.6±1.1) mol m−2 s−1 exp[(−24.8±0.4)kJ mol−1/RT] and JH2=(3.7±0.6) mol m−2 s−1 exp[(−21.3±1.0)kJ mol−1/RT], respectively, at 100 kPa H2 pressure difference.  相似文献   

19.
The S1←S0 transitions in 3-aminobiphenyl were studied in a supersonic jet by laser-induced fluorescence. The results were compared with ab initio HF, CIS and DFT/SCI calculations and with experimental data for the biphenyl, 1-phenylpyrrole and 2-phenylindole. The equilibrium geometry of the 3-aminobiphenyl in the S1 state is non-planar with the dihedral angle between two phenyl rings about 5.4° (CIS/6-31G*). The torsional potential in the S1 state has been determined by fitting the one-dimensional potential of the form V(φ)= 2 ∑n Vn(1−cos ), to reproduce the observed level spacing (V2=3420, V4=−378, V6=−32.8 and V8=−2.9 cm−1). The observed deuteration effects seem to confirm this potential.  相似文献   

20.
The products of ascorbic acid oxidation in the presence of cobalt octa-4,5-carboxy-phthalocyanine sodium salt (TPH) were identified. These include the ascorbate radical (A·), hydroxyl radical (OH·), and hydrogen peroxide (H2O2). The kinetics of accumulation and consumption of the reaction products was studied. For the concentration ranges of ascorbic acid = 0–2.5 ⋅ 10−3 mol L−1 and the catalyst C TPH = 0–3.5 ⋅ 10−5 mol L−1, the the highest possible concentration of the ascorbate radical is ∼10−7 mol L−1, the concentration of H2O2 is 7 ⋅ 10−4 (30% of the starting concentration of ascorbic acid) and the concentration of the hydroxyl radical is at most 10−6 mol L−1.__________Published in Russian in Izvestiya Akademii Nauk. Seriya Khimicheskaya, No. 10, pp. 2224–2228, October, 2004.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号