首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 930 毫秒
1.
The interfacial tensions of mixed α-dipalmitoylphosphatidylcholine (DPPC)/β-lactoglobulin layers at the chloroform/water interface have been measured by the pendent drop and drop volume techniques. In certain intervals, the adsorption kinetics of these mixed layers was strongly influenced by the concentrations of both protein and DPPC. However, at low protein concentration, Cβ-lactoglobulin=0.1 mg l−1, the adsorption rate of mixed interfacial layers was mainly controlled by the variation of the DPPC concentration. As Cβ-lactoglobulin was increased to 0.8 mg l−1, the interfacial activity was abruptly increased, and within the concentration range of CDPPC=10−4–10−5 mol l−1, the DPPC has very little effect on the whole adsorption process. In this case, the adsorption rate of mixed layers was mainly dominated by the protein adsorption. This phenomenon also happened as the protein concentration was further increased to 3.6 mg l−1. When CDPPC>3 · 10–5 mol l−1, the adsorption behaviour was very similar to that of the pure DPPC although the protein concentration was changed. The equilibrium interfacial tensions of the mixed layers are dramatically effected by the lipid as compared to the pure protein adsorption at the same concentration. It reveals the estimation of which composition of lipid and protein decreases the interfacial tension. The combination of Brewster angle microscopy (BAM) with a conventional LB trough was applied to investigate the morphology of the mixed DPPC/β-lactoglobulin layers at the air/water interface. The mixed insoluble monolayers were produced by spreading the lipid at the water surface and the protein adsorbed from the aqueous buffer subphase. The BAM images allow to visualise the protein penetration and distribution into the DPPC monolayer on compression of the complex film. It is shown that a homogeneous distribution of β-lactoglobulin in lipid layers preferentially happens in the liquid fluid state of the monolayer while the protein can be squeezed out at higher surface pressures.  相似文献   

2.
D.F. Zhou  Y.J. Xia  J.X. Zhu  J. Meng   《Solid State Sciences》2009,11(9):1587-1591
Ce6−xDyxMoO15−δ (0.0 ≤ x ≤ 1.8) were synthesized by modified sol–gel method. Structural and electrical properties were investigated by means of X-ray diffraction (XRD), Raman, X-ray photoelectron spectroscopy (XPS) and electrochemical impedance spectroscopy (EIS). The XRD patterns showed that the materials were single phase with a cubic fluorite structure. Impedance spectroscopy measurement in the temperature range between 350 °C and 800 °C indicated a sharp increase in conductivity for the system containing small amount of Dy2O3. The Ce5.6Dy0.4MoO15−δ detected to be the best conducting phase with the highest conductivity (σt = 8.93 × 10−3 S cm−1) is higher than that of Ce5.6Sm0.4MoO15−δ (σt = 2.93 × 10−3 S cm−1) at 800 °C, and the corresponding activation energy of Ce5.6Dy0.4MoO15−δ (0.994 eV) is lower than that of Ce5.6Sm0.4MoO15−δ (1.002 eV).  相似文献   

3.
Molecular physicobiochemical calculations indicated that the metallic ion binding to beta-amyloids (Aβ) may induce production of hydrogen peroxide, which triggers the Ca ion redistribution from the extracellular to the intracellular compartmentation, resulting in a transient membrane electropotential drop by at least 208.06 mV. Moreover, using the Mark and Houwink empirical equation, we predicted that the diffusible distances of all Aβ identities would be confined in a very tiny region within a radius less than 3.96 × 10−4 cm in brain at 192 h after produced. Because of the inherent tendency of aggregation behaved by the Aβs, the maximum diffusion coefficient and inherent viscosity were 8.24 × 10−15 cm2 s−1 and 72.15 cps for the 12 mers (40.8 kDa), the largest soluble form of ABs.Conclusively, we have quantitatively predicted that the shock membrane potential drop (Δφ > 208.06 mV) and limited diffusible distance (<3.96 × 10−4 cm) in the brain would contribute the major detrimental effects to the neurons in the Alzheimer's diseases.  相似文献   

4.
The diffusion of strontium and zirconium in single crystal BaTiO3 was investigated in air at temperatures between 1000 °C and 1250 °C. Thin films of SrTiO3, deposited by spin coating a precursor solution and thin films of zirconium, deposited onto the sample surfaces by sputtering, were used as diffusion sources. The diffusion profiles were measured by SIMS depth profiling on a time-of-flight secondary ion mass spectrometer (ToF-SIMS). The diffusion coefficients of strontium and zirconium were given by DSr = 3.6 × 102.0±4.4 exp[−(543 ± 117) kJ mol−1/(RT)] cm2 s−1 and DZr = 1.1 × 101.0±2.1 exp[−(489 ± 56) kJ mol−1/(RT)] cm2 s−1. The results are discussed in terms of different diffusion mechanisms in the perovskite structure of BaTiO3.  相似文献   

5.
MFI membrane with high permeance was successfully synthesized on the macroporous (pore size of 3–4 μm) α-Al2O3 tubular support with a novel modified secondary growth method. Before the crystallization, the seeded support was wrapped with Teflon tape in order to focalize the growth of crystals in the region of seed layer. The as-synthesized membrane was characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM) and single-gas permeation testing. The results indicated that the as-synthesized membrane had a thickness of 6–8 μm similar to the thickness of the seed layer and exhibited high gas permeance. At room temperature, the permeance of H2 and the ideal separation factor of H2/SF6 reached 1.64 × 10−6 mol m−2 s−1 Pa−1 and 71, respectively. The permeance of single-gas increased with the increasing of temperature. The ideal separation factors of H2/i-C4H10 and H2/SF6 decreased with the increasing of temperature from 298 to 473 K. At 473 K, the ideal separation factors of H2/i-C4H10 and H2/SF6 were 12.16 and 11.08, which were still higher than their Knudsen ratios of 5.39 and 8.54, respectively.  相似文献   

6.
Chiral imidazole hydrolytic metalloenzyme models with characteristics of chiral centers directly link to imidazole N-atoms and varieties in both alkyl chain length and number of alkyl chains, have been synthesised and investigated for enantioselective hydrolysis of Boc-α-amino acid esters. The result indicates that both hydrolysis rates and enantioselectivities are increased with increases in the alkyl chain length and the number of the alkyl chains in the lipophilic chiral imidazole-type surfactants in many cases. The lipophilic chiral imidazole 4d ((S)-1-hexadecoxy-2-(1-imidazolyl)-propane), which has one long alkyl chain, shows higher hydrolysis rate and enantioselectivity (kD = 132.5 × 10−5, kD/kL = 5.38), 5d ((S)-1,5-dihexadecoxy-2-(1-imidazolyl)-pentane), which has two long alkyl chains, shows the highest hydrolysis rate and enantioselectivity (kD = 201.5 × 10−5, kD/kL = 11.72). Additionally, the effects of the metals, the additives, the solvents and the substrates on the hydrolysis rates and enantioselectivities are examined.  相似文献   

7.
The solubilization of pyrene in aqueous solution of β-cyclodextrin (β-CD) or its derivatives such as β-CD-hexanoyl, β-CD-benzoyl and β-CD-dodecylsulfonate was investigated by spectrophotometry. Linear and non-linear regression methods were used to estimate the association constants (K1). A 1:1 stoichiometric ratio and different effects of the hexanoyl, benzoyl and dodecylsulfonate groups on the association constant were observed for the binary inclusion complex between pyrene and β-CD. The formation constant was shown to decrease when β-CD was modified by a dodecylsulfonate chain. The value of K1 was 190 ± 10 L mol−1 for the [pyrene/β-CD] complex and 145 L mol−1 for the [pyrene/β-CD-dodecylsulfonate] complex. Partitioning of the pyrene molecules between the dodecylsulfonate chains and cyclodextrin cavities can explain the decrease in the association constant value. In the cases of β-CD-hexanoyl and β-CD-benzoyl derivatives, no association constants were detected. Results suggest that the high hydrophobicity of the hexanoyl and benzoyl groups prevents the inclusion of pyrene molecules inside the cyclodextrin cavity.  相似文献   

8.
The hydrogen evolution reaction (HER) was studied on smooth Co and on electrodeposited Ni–Co ultramicroelectrodes (UMEs) in alkaline solutions at several temperatures by steady-state polarisation curves. The real electrochemical area was previously estimated by cyclic voltammetry to account for the large difference in roughness factor of the two surfaces. The values obtained for the Tafel slopes were very close to 2.303RT/βnF while the ‘apparent’ energies of activation were 59 and 41 kJ mol−1 for Co and Ni–Co, respectively. A common Volmer–Heyrovsky mechanism with Heyrovsky as the rate-determining step (RDS) was initially proposed. This was confirmed when the experimental results were mathematically treated by a non-linear fitting procedure using the kinetic equations derived for that mechanism. The calculations revealed that Ni–Co is a more efficient catalyst for the HER then pure Co, with a rate constant value of 0.16×10−10 mol s−1 cm−2 at 25°C for the slow step. Although this value is more than one order of magnitude smaller than that already reported for deposited Ni, it is considerably larger than the one measured here (0.02×10−10 mol s−1 cm−2) for pure Co at 25°C.  相似文献   

9.
Mesoporous YSZ–γ-Al2O3 membranes were coated on α-Al2O3 (Ø2 mm) tube by dipping the α-Al2O3 support tube into mixed sol consists of nano-size YSZ and bohemite particles followed by drying and calcination at 600 °C. Addition of bohemite in YSZ sol helped a good adhesion and uniform coating of the membrane film onto α-Al2O3 support. The quality of the mesoporous YSZ–γ-Al2O3 membranes was evaluated by the gas permeability experiments. The number of defects was minimized when the γ-Al2O3 content became more than 40%. Addition of γ-Al2O3 inhibited the crystal growth of YSZ, sintering shrinkage and distortion stress. Increase of calcination temperature and time results in the increase of pore size and N2 permeance. A hydrogen perm-selective membrane was prepared by filling palladium into the nano-pores of YSZ–γ-Al2O3 layer by vacuum-assisted electroless plating. Crystal growth of palladium was observed by thermal annealing of the membrane at 600 °C for 40 h. The Pd–YSZ–γ-Al2O3 composite membrane revealed improved thermal stability allowing long-term operation at elevated temperature (>500 °C). This has been attributed to the improved fracture toughness of YSZ–γ-Al2O3 layer and matching of thermal expansion coefficient between palladium and YSZ. Although fracture of the membrane did not occur, decline of H2 flux was observed when the membrane was exposed in 600 °C. This has been attributed to the agglomeration of palladium particles by crystal growth and dense packing into the pore networks of YSZ–γ-Al2O3 by elevation of temperature.  相似文献   

10.
The kinetics of the reaction of the CH3CHBr, CHBr2 or CDBr2 radicals, R, with HBr have been investigated in a temperature-controlled tubular reactor coupled to a photoionization mass spectrometer. The CH3CHBr (or CHBr2 or CDBr2) radical was produced homogeneously in the reactor by a pulsed 248 nm exciplex laser photolysis of CH3CHBr2 (or CHBr3 or CDBr3). The decay of R was monitored as a function of HBr concentration under pseudo-first-order conditions to determine the rate constants as a function of temperature. The reactions were studied separately from 253 to 344 K (CH3CHBr + HBr) and from 288 to 477 K (CHBr2 + HBr) and in these temperature ranges the rate constants determined were fitted to an Arrhenius expression (error limits stated are 1σ + Student’s t values, units in cm3 molecule−1 s−1, no error limits for the third reaction): k(CH3CHBr + HBr) = (1.7 ± 1.2) × 10−13 exp[+ (5.1 ± 1.9) kJ mol−1/RT], k(CHBr2 + HBr) = (2.5 ± 1.2) × 10−13 exp[−(4.04 ± 1.14) kJ mol−1/RT] and k(CDBr2 + HBr) = 1.6 × 10−13 exp(−2.1 kJ mol−1/RT). The energy barriers of the reverse reactions were taken from the literature. The enthalpy of formation values of the CH3CHBr and CHBr2 radicals and an experimental entropy value at 298 K for the CH3CHBr radical were obtained using a second-law method. The result for the entropy value for the CH3CHBr radical is 305 ± 9 J K−1 mol−1. The results for the enthalpy of formation values at 298 K are (in kJ mol−1): 133.4 ± 3.4 (CH3CHBr) and 199.1 ± 2.7 (CHBr2), and for α-C–H bond dissociation energies of analogous compounds are (in kJ mol−1): 415.0 ± 2.7 (CH3CH2Br) and 412.6 ± 2.7 (CH2Br2), respectively.  相似文献   

11.
Reaction of [Cp* RuCl2]2 with -alanine ( -alaH) in methanol at room temperature in the presence of NaOMe yields the complex Na[Cp* RuCl( -ala)] (1), which contains a five-membered N,O-coordinated chelate ring. The analogous complex Na[Cp* RuCl( -phe)] (2) is obtained under similar conditions but at 0°C in 90% yield. At temperatures above 20°C both 2 and the η6-coordinated complex [Cp* Ru( -pheH)]Cl (4) are obtained, with the proportion of the latter increasing with temperature. Compound 4 is obtained in 88% yield by refluxing [Cp* RuCl2]2 and -phenylalanine ( -pheH) in CH3OH/CH3ONa followed by separation from 2. The analogous ruthenium(II) sandwich complexes 510 were obtained from -tyrosine and -tryptophane and various derivatives. [Cp* Ru( -met)] (3), prepared by the reaction of [Cp* RuCl2]2 with -methionine ( -metH) in CH3OH/CH3ONa, displays N,O,S-coordination.  相似文献   

12.
The reduction of α,β unsaturated carbonyl compounds by sodiumborohydride is catalysed by Ni(bpy)Cl2 (bpy=2,2′-bipyridine). Various carbonyl compounds having the general formula R1CH=CHCRO [where R1, R=C6H5, H; p-MeO---C6H4---,C6H4; p-CH3---C6H4, C6H5; (m-OMe---)(p-OMe---)C6H3, C6H5; C6H5, (CH3)2CH---; CH3, H; m-Br---C6H4---, C6H5] are reduced to corresponding allylicalcohol [R1CH=CHCRHOH] at 25°C within half an hour. During these reductions the double bond is partially reduced to give saturated alcohols as minor products having the molecular formula R1CH2CH2CRHOH. The reduction of trans-3-phenyl-2-propenal with NaBH4 and catalytic amounts of Ni(bpy)Cl2 in solvents containing active deuterium (D2O, CD3OD), leads to the partial incorporation of deuterium at the α and γ positions to give C---D bonded alcohols.  相似文献   

13.
Kinetics of the coordination reaction of lanthanide (LaIII, EuIII) α-hydroxycarboxylates [LnL3(H2O)2] with 1,10-phenanthroline (phen) in methanol-water (v/v, 3:2) were studied at 25°C by calorimetric titration. A one-step reaction process in accordance with the rate law has been suggested. The reaction is found to be first order for both lanthanide α-hydroxycarboxylates and phen. We have evaluated rate constants of the reactions. It is found that a linear free energy relationship exists between the stability constants of the lanthanide-α-hydroxycarboxylate-phen ternary complex and the rate constants. It is also found that a linear free energy relationship exists between the rate constants of La-hydroxycarboxylate with phen and the acid strength of α-hydroxy-acid as primary ligand, but the linear free energy relationship does not exist in the Eu-α-hydroxycarboxylate-phen ternary complex. The influence of other factors upon the reaction rate constants was also discussed.  相似文献   

14.
The free‐radical copolymerization of m‐isopropenyl‐α,α′‐dimethylbenzyl isocyanate (TMI) and styrene was studied with 1H NMR kinetic experiments at 70 °C. Monomer conversion vs time data were used to determine the ratio kp × kt?0.5 for various comonomer mixture compositions (where kp is the propagation rate coefficient and kt is the termination rate coefficient). The ratio kp × kt?0.5 varied from 25.9 × 10?3 L0.5 mol?0.5 s?0.5 for pure styrene to 2.03 × 10?3 L0.5 mol?0.5 s?0.5 for 73 mol % TMI, indicating a significant decrease in the rate of polymerization with increasing TMI content in the reaction mixture. Traces of the individual monomer conversion versus time were used to map out the comonomer mixture composition drift up to overall monomer conversions of 35%. Within this conversion range, a slight but significant depletion of styrene in the monomer feed was observed. This depletion became more pronounced at higher levels of TMI in the initial comonomer mixture. © 2002 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 40: 1064–1074, 2002  相似文献   

15.
Asymmetrical thin membranes of SrCe0.95Y0.05O3−δ (SCY) were prepared by a conventional and cost-effective dry pressing method. The substrate consisted of SCY, NiO and soluble starch (SS), and the top layer was the SCY. NiO was used as a pore former and soluble starch was used to control the shrinkage of the substrate to match that of the top layer. Crack-free asymmetrical thin membranes with thicknesses of about 50 μm and grain sizes of 5–10 μm were successfully pressed on to the substrates. Hydrogen permeation fluxes (JH2) of these thin membranes were measured under different operating conditions. At 950 °C, JH2 of the 50 μm SCY asymmetrical membrane towards a mixture of 80% H2/He was as high as 7.6 × 10−8 mol/cm2 s, which was about 7 times higher than that of the symmetrical membranes with a thickness of about 620 μm. The hydrogen permeation properties of SCY asymmetrical membranes were investigated and activation energies for hydrogen permeation fluxes were calculated. The slope of the relationship between the hydrogen permeation fluxes and the thickness of the membranes was −0.72, indicating that permeation in SCY asymmetric membranes was controlled by both bulk diffusion and surface reaction in the range investigated.  相似文献   

16.
Benzeneacetaldehyde-4-hydroxy-α-oxo-aldoxime is proposed as a new sensitive and selective reagent for the spectrophotometric determination of cobalt. The reagent reacts with cobalt in the pH range 8.6–9.4 to form a yellow colored 1:3 chelate which is very well extracted in chloroform. Beer's law is obeyed in the concentration range 0.05–1.3 μg ml−1 cobalt. The molar absorptivity of the extracted species is 2.746×104 l mol−1 cm−1 at 390 nm. The proposed method is highly sensitive, selective, simple, rapid, accurate and has been satisfactorily applied for the determination of cobalt in synthetic mixtures, pharmaceutical samples, biological samples and alloys.  相似文献   

17.
The conditions for the Pd-catalyzed cross coupling of cyclic α-iodoenones, such as 2-iodo-2-cyclohexenone, with alkynylzincs have been optimized. The use of tris(o-furyl)phosphine (TFP) as a ligand and DMF as a solvent has led to the formation of α-alkynylenones in excellent yields. This optimized procedure has been applied to the synthesis of (±)-harveynone and (±)-tricholomenyn A in high yields. Investigation of related α-alkylation reactions using alkylzincs has revealed the following. Methylzinc and primary alkylzinc derivatives readily undergo Pd-catalyzed cross coupling with α-iodoenones. Although (s-Bu)2Zn also undergoes Pd-catalyzed cross coupling, only the n-Bu-substituted products were obtained. α-Benzylation and α-homobenzylation can proceed satisfactorily, whereas allylzinc and propargylzinc derivatives undergo only addition to the carbonyl group. Although some promising results have been obtained in α-homoallylation and α-homopropargylation, these reactions need to be further improved.  相似文献   

18.
Dynamic interfacial tension between aqueous solutions of 3-dodecyloxy-2-hydroxypropyl trimethyl ammonium bromide (R12HTAB) and n-hexane were measured using the spinning drop method. The effects of the R12HTAB concentration (the concentration below the CMC) and temperature on the dynamic interfacial tension have been investigated; the reason of the change of dynamic interfacial tension with time has been discussed. The effective diffusion coefficient, Da, and the adsorption barrier, a, have been obtained from the experimental data using the extended Word–Tordai equation. The results show that the dynamic interfacial tension becomes smaller while a becomes higher with increasing R12HTAB concentration in the bulk aqueous phase. Da decreases from 5.56 × 10−12 m−2 s−1 to 0.87 × 10−12 m−2 s−1 while a increases from 5.41 kJ mol−1 to 7.74 kJ mol−1 with the increase of concentration in the bulk solution of R12HTAB from 0.5 × 10−3 mol dm−3 to 4 × 10−3 mol dm−3. Change of temperature affects the adsorption rate through altering Da and a. The value of Da increases from 5.56 × 10−12 m−2 s−1 to 13.98 × 10−12 m−2 s−1 while that of a decreases from 5.41 kJ mol−1 to 5.07 kJ mol−1 with temperature ascending from 303 K to 323 K. The adsorption of surfactant from the bulk phase into the interface follows a mixed diffusion–activation mechanism, which has been discussed in the light of interaction between surfactant molecules, diffusion and thermo-motion of molecules.  相似文献   

19.
The kinetics of phenylalanine (phe) oxidation by permanganate has been investigated in absence and presence of cetlytrimethylammonium bromide (CTAB) using conventional spectrophotometric technique. The rate shows first- and fractional-order dependence on [MnO4] and [phe] in presence of CTAB. At lower values of [CTAB] (≤10.0 × 10−4 mol dm−3), the catalytic ability of CTAB aggregates are strong. In contrast, at higher values of [CTAB] (≥10.0 × 10−4 mol dm−3), the inhibitory effect was observed in absence of H2SO4. We find that anions (Br, Cl and NO3) in the form of sodium salts are strong inhibitors for the CTAB catalyzed oxidation. Kinetic and spectrophotometric evidences for the formation of an intermediate complex and an ion-pair complex between phe and MnO4, CTAB and MnO4, respectively, are presented. A mechanism consistent with kinetic results has been discussed. Complex formation constant (Kc) and micellar binding constant (Ks) were calculated at 30 °C and found to be Kc = 319 mol−1 dm−3 and Ks = 1127 mol−1 dm−3, respectively.  相似文献   

20.
Dynamical spin chirality of α-glycine crystal at 301−302 K was investigated by DC (direct current)-magnetic susceptibility measurement at temperatures ranging from 2 to 315 K under the external magnetic fields (H=±1 T) parallel to the b axis. The α-glycine crystallizes in space group P21/n with four molecules in a cell, which has centrosymmetric charge distribution. The bifurcated hydrogen bonds N+(3)−H(8)···O(1) and N+(3)−H(8)···O(2) are stacked along the b axis with different bond intensities and angles, which form anti-parallel double layers. Atomic force spectroscopy result at 303 K indicated that the surface molecular structures of α-glycine formed a regular flexuous framework in the b axis direction. The strong temperature dependence is related to the reorientation of NH3+ group and the electron spin flip-flop of (N+H) mode. Under the opposite external magnetic field of 1 T and −1 T, the electron spins of N+(3)−H(8)···O(1) and N+(3)−H(8)···O(2) flip-flop at 301−302 K. These results suggested a mechanism of the magnetoelectric effect based on the dynamical spin chirality of (N+H), which induced the electric polarization to produce the onset of pyroelectricity of α-glycine around 304 K.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号