首页 | 本学科首页   官方微博 | 高级检索  
     检索      


The structure and dynamic properties of mixed adsorption and penetration layers of α-dipalmitoylphosphatidylcholine/β-lactoglobulin at water/fluid interfaces
Authors:Junbai Li  Hui Chen  Jing Wu  Jiang Zhao  Reinhard Miller
Abstract:The interfacial tensions of mixed α-dipalmitoylphosphatidylcholine (DPPC)/β-lactoglobulin layers at the chloroform/water interface have been measured by the pendent drop and drop volume techniques. In certain intervals, the adsorption kinetics of these mixed layers was strongly influenced by the concentrations of both protein and DPPC. However, at low protein concentration, Cβ-lactoglobulin=0.1 mg l−1, the adsorption rate of mixed interfacial layers was mainly controlled by the variation of the DPPC concentration. As Cβ-lactoglobulin was increased to 0.8 mg l−1, the interfacial activity was abruptly increased, and within the concentration range of CDPPC=10−4–10−5 mol l−1, the DPPC has very little effect on the whole adsorption process. In this case, the adsorption rate of mixed layers was mainly dominated by the protein adsorption. This phenomenon also happened as the protein concentration was further increased to 3.6 mg l−1. When CDPPC>3 · 10–5 mol l−1, the adsorption behaviour was very similar to that of the pure DPPC although the protein concentration was changed. The equilibrium interfacial tensions of the mixed layers are dramatically effected by the lipid as compared to the pure protein adsorption at the same concentration. It reveals the estimation of which composition of lipid and protein decreases the interfacial tension. The combination of Brewster angle microscopy (BAM) with a conventional LB trough was applied to investigate the morphology of the mixed DPPC/β-lactoglobulin layers at the air/water interface. The mixed insoluble monolayers were produced by spreading the lipid at the water surface and the protein adsorbed from the aqueous buffer subphase. The BAM images allow to visualise the protein penetration and distribution into the DPPC monolayer on compression of the complex film. It is shown that a homogeneous distribution of β-lactoglobulin in lipid layers preferentially happens in the liquid fluid state of the monolayer while the protein can be squeezed out at higher surface pressures.
Keywords:Phospholipids  β  -lactoglobulin  Adsorption  Fluid interface  Mixed monolayer
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号