首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
The fragmentation patterns obtained by ultraviolet photodissociation (UVPD) and collision-induced dissociation (CID) in a quadrupole ion trap mass spectrometer were compared for peptides modified at their C-termini and at acidic amino acids. Attachment of Alexa Fluor 350 or 7-amino-4-methyl-coumarin chromophores at the C-terminal and acidic residues enhances the UV absorptivity of the peptides and all fragment ions that retain the chromophore, such as the y ions that contain the chromophore-modified C-terminus. Whereas CID results in the formation of the typical array of mainly y-type and a/b-type fragment ions, UVPD produces predominantly a/b-type ions with greatly reduced abundances of y ions. Immonium ions, mostly ones from aromatic or basic amino acids, are also observed in the low m/z range upon UVPD. UVPD of peptides containing two chromophore moieties (with one at the C-terminus and another at an acidic residue) results in even more efficient photodissociation at the expense of the annihilation of almost all diagnostic b and y ions containing the chromophore.  相似文献   

2.
A set of three heparin-derived disaccharide deprotonated ions was isolated in a linear ion trap and subjected to UV laser irradiation in the 220–290 nm wavelength range. The dissociation yields of the deprotonated molecular ions were recorded as a function of laser wavelength. They revealed maximum absorption at 220 nm for the nonsulfated disaccharide, but centered at 240 nm for the sulfated species. The comparison of the fragmentation patterns between ultraviolet photodissociation (UVPD) at 240 nm and CID modes showed roughly the same distribution of fragment ions resulting from glycosidic bond cleavages. Interestingly, UVPD favored additional cross ring cleavages of A and X type ion series enabling easier sulfate group location. It also reduced small neutral losses (H2O).  相似文献   

3.
The fragmentation patterns of hydrazide-conjugated and reductively aminated oligosaccharides, including lacto-N-fucopentaoses and lacto-N-difucohexaoses, produced on collisionally induced dissociation (CID) and ultraviolet photodissociation (UVPD) in a quadrupole ion trap are presented. The two derivatization methods generate different cross-ring cleavages on UVPD and CID. UVPD of hydrazide-conjugated oligosaccharides yield predominant (2, 4)A-type cross-ring cleavage ions. In contrast, UVPD of aminated oligosaccharides results mainly in (0, 1)A-type ions. Moreover, more extensive dual-cleavage pathways (i.e. internal fragment ions) were observed on UVPD.  相似文献   

4.
Ultraviolet photodissociation at 193?nm (UVPD) and negative electron transfer dissociation (NETD) were compared to establish their utility for characterizing acidic proteomes with respect to sequence coverage distributions (a measure of product ion signals across the peptide backbone), sequence coverage percentages, backbone cleavage preferences, and fragmentation differences relative to precursor charge state. UVPD yielded significantly more diagnostic information compared with NETD for lower charge states (n????2), but both methods were comparable for higher charged species. While UVPD often generated a more heterogeneous array of sequence-specific products (b-, y-, c-, z-, Y-, d-, and w-type ions in addition to a- and x- type ions), NETD usually created simpler sets of a/x-type ions. LC-MS/UVPD and LC-MS/NETD analysis of protein digests utilizing high pH mobile phases coupled with automated database searching via modified versions of the MassMatrix algorithm was undertaken. UVPD generally outperformed NETD in stand-alone searches due to its ability to efficiently sequence both lower and higher charge states with rapid activation times. However, when combined with traditional positive mode CID, both methods yielded complementary information with significantly increased sequence coverage percentages and unique peptide identifications over that of just CID alone.  相似文献   

5.
Electrospray ionization (ESI) of tryptophan gives rise to multiply charged, non‐covalent tryptophan cluster anions, [Trpn–xH]x?, in a linear ion trap mass spectrometer, as confirmed by high‐resolution experiments performed on a Fourier transform ion cyclotron resonance (FT‐ICR) mass spectrometer. The smallest multiply charged clusters that can be formed in the linear ion trap as a function of charge state are: x = 2, n = 7; x = 3, n = 16; x = 4, n = 31. The fragmentation of the dianionic cluster [Trp9–2H]2? was examined via low‐energy collision‐induced dissociation (CID), ultraviolet photodissociation (UVPD) at 266 nm and electron‐induced dissociation (EID) at electron energies ranging from >0 to 30 eV. CID proceeds mostly via charge separation and evaporation of neutral tryptophan. The smallest doubly charged cluster that can be formed via evaporation of neutral tryptophans is [Trp7–2H]2?, consistent with the observation of this cluster in the ESI mass spectrum. UVPD gives singly charged tryptophan clusters ranging from n = 2 to n = 9. The latter ion arises from ejection of an electron to give the radical anion cluster, [Trp9–2H]?.. The types of gas‐phase EID reactions observed are dependent on the energy of the electrons. Loss of neutral tryptophan is an important channel at lower energies, with the smallest doubly charged ion, [Trp7–2H]2?, being observed at 19.8 eV. Coulomb explosion starts to occur at 19.8 eV to form the singly charged cluster ions [Trpx–H]? (x = 1–8) via highly asymmetric fission. At 21.8 eV a small amount of [Trp2–H–NH3]? is observed. Thus CID, UVPD and EID are complementary techniques for the study of the fragmentation reactions of cluster ions. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

6.
The combination of near‐UV photodissociation with electron transfer and collisional activation provides a new tool for structure investigation of isolated peptide ions and reactive intermediates. Two new types of pulse experiments are reported. In the first one called UV/Vis photodissociation–electron transfer dissociation (UVPD‐ETD), diazirine‐labeled peptide ions are shown to undergo photodissociation in the gas phase to form new covalent bonds, guided by the ion conformation, and the products are analyzed by electron transfer dissociation. In the second experiment, called ETD‐UVPD wherein synthetic labels are not necessary, electron transfer forms new cation–peptide radical chromophores that absorb at 355 nm and undergo specific backbone photodissociation reactions. The new method is applied to distinguish isomeric ions produced by ETD of arginine containing peptides. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

7.
The 157 nm photofragmentation of native and derivatized oligosaccharides was studied in a linear ion trap and in a home-built matrix-assisted laser desorption/ionization (MALDI) tandem time-of-flight (TOF/TOF) mass spectrometer, and the results were compared with collision-induced dissociation (CID) experiments. Photodissociation produces product ions corresponding to high-energy fragmentation pathways; for cation-derivatized oligosaccharides, it yields strong cross-ring fragment ions and provides better sequence coverage than low- and high-energy CID experiments. On the other hand, for native oligosaccharides, CID yielded somewhat better sequence coverage than photodissociation. The ion trap enables CID hybrid MS3 experiments on the high-energy fragment ions obtained from photodissociation.  相似文献   

8.
不同电荷态泛素蛋白离子的193 nm紫外光解离质谱   总被引:1,自引:0,他引:1  
将193 nm激光与傅里叶变换离子回旋共振(FT-ICR)质谱仪结合, 研究了不同价态的泛素蛋白离子的紫外光解离质谱. 结果表明, 在光解离过程中向分析池内引入适量的碰撞气, 不仅能增加母体离子的裂解率, 也能提高碎片离子的捕获效率. 相对于碰撞辅助解离(CAD)中产生的b和y离子, 紫外光解离(UVPD)方法能够产生更为丰富的不同种类碎片离子. 其中, 对于+11价泛素离子, 蛋白质序列的覆盖率接近80%, 远高于对应的CAD实验结果. 与已往报道不同的是, 裂解覆盖率呈现出较强的电荷相关性. 因此, 如何进一步提高较低电荷态的蛋白离子的解离效率和序列覆盖率还需深入研究.  相似文献   

9.
In‐source collision‐induced dissociation (CID) is commonly used with single‐stage high‐resolution mass spectrometers to gather both a molecular formula and structural information through the collisional activation of analytes with residual background gas in the source region of the mass spectrometer. However, unlike tandem mass spectrometry, in‐source CID does not involve an isolation step prior to collisional activation leading to a product ion spectrum composed of fragment ions from any analyte present during the activation event. This work provides the first comparison of in‐source CID and beam‐type CID spectra of emerging synthetic drugs on the same instrument to understand the fragmentation differences between the two techniques and to contribute to the scientific foundations of in‐source CID. Electrospray ionization–quadrupole time‐of‐flight (ESI‐Q‐TOF) mass spectrometry was used to generate product ion spectra from in‐source CID and beam‐type CID for a series of well‐characterized fentanyl analogs and synthetic cathinones. A comparison between the fragmentation patterns and relative ion abundances for each technique was performed over a range of fragmentor offset voltages for in‐source CID and a range of collision energies for beam‐type CID. The results indicate that large fragmentor potentials for in‐source CID tend to favor higher energy fragmentation pathways that result in both kinetically favored pathways and consecutive neutral losses, both of which produce more abundant lower mass product ions relative to beam‐type CID. Although conditions can be found in which in‐source CID and beam‐type CID provide similar overall spectra, the in‐source CID spectra tend to contain elevated noise and additional chemical background peaks relative to beam‐type CID.  相似文献   

10.
UV photodissociation (UVPD) at 262 nm has been carried out on protonated tyrosyl-containing peptides formed by trypsin digestion of apo-transferrin. Under UVPD, the main event is the fragmentation of the C(alpha)-C(beta) bond of the tyrosyl residues leading to a radical ion 107 Da below the precursor ion. The dissociation rate of this specific cleavage appears to be strongly dependent on the peptide sequence and is more prominent on the singly protonated species than on the doubly protonated state. The fragmentation spectra resulting from collisional activation of the protonated even-electron native peptides and of the odd-electron radical species prepared by UVPD are dominated by y-type backbone cleavages. A comparison of their respective y-ion pattern shows complementarities since the combination of both increases the sequence coverage of the peptide sequence. The specific detection of the neutral loss of 107 Da from peptides witnesses the content of at least one tyrosyl residue and, though preliminary, is proposed as a potential new filtering strategy during protein database searching.  相似文献   

11.
We report a comprehensive study of collision-induced dissociation (CID) and near-UV photodissociation (UVPD) of a series of tyrosine-containing peptide cation radicals of the hydrogen-rich and hydrogen-deficient types. Stable, long-lived, hydrogen-rich peptide cation radicals, such as [AAAYR + 2H]+● and several of its sequence and homology variants, were generated by electron transfer dissociation (ETD) of peptide-crown-ether complexes, and their CID-MS3 dissociations were found to be dramatically different from those upon ETD of the respective peptide dications. All of the hydrogen-rich peptide cation radicals contained major (77%–94%) fractions of species having radical chromophores created by ETD that underwent photodissociation at 355 nm. Analysis of the CID and UVPD spectra pointed to arginine guanidinium radicals as the major components of the hydrogen-rich peptide cation radical population. Hydrogen-deficient peptide cation radicals were generated by intramolecular electron transfer in CuII(2,2:6,2-terpyridine) complexes and shown to contain chromophores absorbing at 355 nm and undergoing photodissociation. The CID and UVPD spectra showed major differences in fragmentation for [AAAYR]+● that diminished as the Tyr residue was moved along the peptide chain. UVPD was found to be superior to CID in localizing Cα-radical positions in peptide cation radical intermediates.
Graphical Abstract ?
  相似文献   

12.
The fluorescence and photodissociation of rhodamine 575 cations confined to a quadrupole ion trap are observed during laser irradiation at 488 nm. The kinetics of photodissociation is measured by time-dependent mass spectra and time-dependent fluorescence. The rhodamine ion signal and fluorescence decay are studied as functions of buffer gas pressure, laser fluence, and irradiation time. The decay rates of the ions in the mass spectra agree with decay rates of the fluorescence. Some of the fragment ions also fluoresce and further dissociate. The photodissociation rate is found to depend on the incident laser fluence and buffer gas pressure. The implications of rapid absorption/fluorescence cycling for photodissociation of dye-labeled biomolecular ions under continuous irradiation are discussed.  相似文献   

13.
The ultraviolet laser desorption/ionization of polyaromatic hydrocarbons (PAHs) has been investigated under different background pressures of an inert gas (up to 1.2 mbar of N2) in the ion source of a hybrid, orthogonal‐extracting time‐of‐flight mass spectrometer (oTOF‐MS). The study includes an ensemble of six model PAHs with isolated single polyaromatic cores and four ones with multiple cross‐linked aromatic and polyaromatic cores. In combination with a weak ion extraction field, the variation of the buffer gas pressure allowed to control the degree of collisional cooling of the desorbed PAHs and, thus, to modulate their decomposition into fragments. The dominant fragmentation channels observed are related to dehydrogenation of the PAHs, in most cases through the cleavage of even numbers of C―H bonds. Breakage of C―C bonds leading to the fragmentation of rings, side chains and core linkages is also observed, in particular, at low buffer gas pressures. The precise patterns of the combined fragmentation processes vary significantly between the PAHs. The highest abundances of molecular PAH ions and cleanest mass spectra were consistently obtained at the highest buffer gas pressure of 1.2 mbar. The effective quenching of the fragmentation pathways at this elevated pressure improves the sensitivity and data interpretation for analytical applications, although the fragmentation of side chains and of bonds between (poly)aromatic cores is not completely suppressed in all cases. Moreover, these results suggest that the detected fragments are generated through thermal equilibrium processes rather than as a result of rapid photolysis. This assumption is further corroborated by a laser desorption/ionization post‐source decay analysis using an axial time‐of‐flight MS. In line with these findings, covalent oligomers of the PAHs, which are presumably formed by association of two or more dehydrogenated fragments, are detected with higher abundances at the lower buffer gas pressures. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

14.
A study is made of the mass spectral fragmentation pathways of sildenafil, thiosildenafil, and analogous compounds. A prominent gas‐phase reaction that occurs during collision‐induced dissociation (CID) of thiosildenafil compounds is the transfer of an alkyl group from the piperazine nitrogen atom to the sulfur atom of the thiocarbonyl group. This phenomenon is clearly demonstrated through a comparison of electrospray ionization mass spectral fragmentation patterns of four sildenafil‐type compounds and three related thiosildenafil derivatives. Molecular modeling and fragmentation patterns support a direct intramolecular alkyl transfer mechanism rather than an ion‐neutral complex mechanism. CID of thiohydroxyhomosildenafil results in a facile hydroxyethyl migration to the sulfur atom followed by a second intramolecular reaction to form a spiro‐1,3‐oxathiolane ring, which fragments in two directions to generate both carbonyl and thiocarbonyl product ions from this thiocarbonyl compound. While methyl migration to the thiocarbonyl sulfur atom of thiosildenafil is dominant, methyl migration to the carbonyl oxygen atom of sildenafil may occur to a small extent. Published in 2008 by John Wiley & Sons, Ltd.  相似文献   

15.
The fragmentation of 5-hydroxy-6-glutathionyl-7,9,11,14-eicosatetraenoic acid [leukotriene C4 or LTC4 (5, 6)] and its isomeric counterpart LTC4 (14, 15) were studied by low and high-energy collisional induced dissociation (CID) and 157 nm photofragmentation. For singly charged protonated LTC4 precursors, photodissociation significantly enhances the signal intensities of informative fragment ions that are very important to distinguish the two LTC4 isomers and generates a few additional fragment ions that are not usually observed in CID experiments. The ion trap enables MSn experiments on the fragment ions generated by photodissociation. Photofragmentation is found to be suitable for the structural identification and isomeric differentiation of cysteinyl leukotrienes and is more informative than low or high-energy CID. We describe for the first time the structural characterization of the LTC4 (14, 15) isomer by mass spectrometry using CID and 157 nm light activation methods.  相似文献   

16.
Several approaches for the generation of peptide radical cations using ion/ion reactions coupled with either collision induced dissociation (CID) or ultraviolet photo dissociation (UVPD) are described here. Ion/ion reactions are used to generate electrostatic or covalent complexes comprised of a peptide and a radical reagent. The radical site of the reagent can be generated multiple ways. Reagents containing a carbon–iodine (C―I) bond are subjected to UVPD with 266‐nm photons, which selectively cleaves the C―I bond homolytically. Alternatively, reagents containing azo functionalities are collisionally activated to yield radical sites on either side of the azo group. Both of these methods generate an initial radical site on the reagent, which then abstracts a hydrogen from the peptide while the peptide and reagent are held together by either electrostatic interactions or a covalent linkage. These methods are demonstrated via ion/ion reactions between the model peptide RARARAA (doubly protonated) and various distonic anionic radical reagents. The radical site abstracts a hydrogen atom from the peptide, while the charge site abstracts a proton. The net result is the conversion of a doubly protonated peptide to a peptide radical cation. The peptide radical cations have been fragmented via CID and the resulting product ion mass spectra are compared to the control CID spectrum of the singly protonated, even‐electron species. This work is then extended to bradykinin, a more broadly studied peptide, for comparison with other radical peptide generation methods. The work presented here provides novel methods for generating peptide radical cations in the gas phase through ion/ion reaction complexes that do not require modification of the peptide in solution or generation of non‐covalent complexes in the electrospray process. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

17.
The photodissociation by 157 nm light of singly- and doubly-charged peptide ions containing C- or N-terminal arginine residues was studied in a linear ion trap mass spectrometer. Singly-charged peptides yielded primarily x- and a-type ions, depending on the location of the arginine residue, along with some related side-chain fragments. These results are consistent with our previous work using a tandem time-of-flight (TOF) instrument with a vacuum matrix-assisted laser desorption/ionization (MALDI) source. Thus, the different internal energies of precursor ions in the two experiments seem to have little effect on their photofragmentation. For doubly-charged peptides, the dominant fragments observed in both photodissociation and collisionally induced dissociation (CID) experiments are b- and y-type ions. Preliminary experiments demonstrating fragmentation of multiply-charged ubiquitin ions by 157 nm photodissociation are also presented.  相似文献   

18.
The photodissociation of rhodamine 575 cations held in a quadrupole ion trap is studied using 514 nm light as a function of buffer gas pressure, irradiation time, and laser fluence. The laser-induced photodissociation decays of rhodamine ions have lifetimes on the order of seconds for the range of pressures and powers investigated and exhibit strong nonlinear pressure dependence. Dissociation mechanisms are considered that involve the sequential absorption of multiple photons and several collisional deactivation steps.  相似文献   

19.
The first application of light‐emitting diodes (LEDs) for ultraviolet photodissociation (UVPD) mass spectrometry is reported. LEDs provide a compact, low cost light source and have been incorporated directly into the trapping cell of an Orbitrap mass spectrometer. MS/MS efficiencies of over 50 % were obtained using an extended irradiation period, and UVPD was optimized by modulating the ion trapping parameters to maximize the overlap between the ion cloud and the irradiation volume.  相似文献   

20.
Selected Reaction Monitoring (SRM) carried out on triple‐quadrupole mass spectrometers coupled to liquid chromatography has been a reference method to develop quantitative analysis of small molecules in biological or environmental matrices for years and is currently emerging as a promising tool in clinical proteomic. However, sensitive assays in complex matrices are often hampered by the presence of co‐eluted compounds that share redundant transitions with the target species. On‐the‐fly better selection of the precursor ion by high‐field asymmetric waveform ion mobility spectrometry (FAIMS) or increased quadrupole resolution is one way to escape from interferences. In the present work we document the potential interest of substituting classical gas‐collision activation mode by laser‐induced dissociation in the visible wavelength range to improve the specificity of the fragmentation step. Optimization of the laser beam pathway across the different quadrupoles to ensure high photo‐dissociation yield in Q2 without detectable fragmentation in Q1 was assessed with sucrose tagged with a push‐pull chromophore. Next, the proof of concept that photo‐SRM ensures more specific detection than does conventional collision‐induced dissociation (CID)‐based SRM was carried out with oxytocin peptide. Oxytocin was derivatized by the thiol‐reactive QSY® 7 C5‐maleimide quencher on cysteine residues to shift its absorption property into the visible range. Photo‐SRM chromatograms of tagged oxytocin spiked in whole human plasma digest showed better detection specificity and sensitivity than CID, that resulted in extended calibration curve linearity. We anticipate that photo‐SRM might significantly improve the limit of quantification of classical SRM‐based assays targeting cysteine‐containing peptides. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号