首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The 157 nm photofragmentation of native and derivatized oligosaccharides was studied in a linear ion trap and in a home-built matrix-assisted laser desorption/ionization (MALDI) tandem time-of-flight (TOF/TOF) mass spectrometer, and the results were compared with collision-induced dissociation (CID) experiments. Photodissociation produces product ions corresponding to high-energy fragmentation pathways; for cation-derivatized oligosaccharides, it yields strong cross-ring fragment ions and provides better sequence coverage than low- and high-energy CID experiments. On the other hand, for native oligosaccharides, CID yielded somewhat better sequence coverage than photodissociation. The ion trap enables CID hybrid MS3 experiments on the high-energy fragment ions obtained from photodissociation.  相似文献   

2.
Characterization of structural isomers has become increasingly important and extremely challenging in glycobiology. This communication demonstrates the capability of ion-trap mass spectrometry in conjunction with 157 nm photofragmentation to identify different structural isomers of permethylated N-glycans derived from ovalbumin without chromatographic separation. The results are compared with collision-induced dissociation (CID) experiments. Photodissociation generates extensive cross-ring fragment ions as well as diagnostic glycosidic product ions that are not usually observed in CID MS/MS experiments. The detection of these product ions aids in characterizing indigenous glycan isomers. The ion trap facilitates MS(n) experiments on the diagnostic glycosidic fragments and cross-ring product ions generated through photofragmentation, thus allowing unambiguous assignment of all of the isomeric structures associated with the model glycoprotein used in this study. Photofragmentation is demonstrated to be a powerful technique for the structural characterization of glycans.  相似文献   

3.
The photodissociation by 157 nm light of singly- and doubly-charged peptide ions containing C- or N-terminal arginine residues was studied in a linear ion trap mass spectrometer. Singly-charged peptides yielded primarily x- and a-type ions, depending on the location of the arginine residue, along with some related side-chain fragments. These results are consistent with our previous work using a tandem time-of-flight (TOF) instrument with a vacuum matrix-assisted laser desorption/ionization (MALDI) source. Thus, the different internal energies of precursor ions in the two experiments seem to have little effect on their photofragmentation. For doubly-charged peptides, the dominant fragments observed in both photodissociation and collisionally induced dissociation (CID) experiments are b- and y-type ions. Preliminary experiments demonstrating fragmentation of multiply-charged ubiquitin ions by 157 nm photodissociation are also presented.  相似文献   

4.
High-energy collision-induced dissociation (CID) experiments on polycyclic aromatic hydrocarbons (PAHs) having 2-6 rings, naphthalene, anthracene, phenanthrene, fluoranthene, pyrene and coronene, were performed, and the relative abundances of their fragment ions were investigated as a function of collision energy. The results revealed that the PAHs except naphthalene showed a bimodal-type distribution of positive fragmentation ions, which is closely similar to the fragment-ion distribution reported for the CID of three-dimensional fullerene, C(60)(+) and C(70)(+). The three-ring isomers of anthracene and phenanthrene and the four-ring isomers of fluoranthene and pyrene can be distinguishable in their spectra under an electron ionization energy of 70 eV, but the high-energy CID spectra of the three- and four-ring isomers were almost identical. The fragmentation corresponding to fragment ions in the low-mass region of the bimodal CID spectra could be interpreted by the simple statistical model that fragment ions are formed by random evaporation from the molecular ions after a considerable structural rearrangement, 'phase transition', occurring at some high-energy state.  相似文献   

5.
The fragmentation mechanism of the acylpentamine toxins 1-4 found in the venom of the spider Agelenopsis aperta has been investigated in detail. To identify the origin of the two doublets of unexpected fragment ions at m/z 129/112 and m/z 115/98, three synthetic 15N-labeled analogs 5-7 have been prepared and subjected to CID fragmentation on a triple quadrupole mass spectrometer. It appears that the unexpected doublet of fragment ions arises from an internal portion of the polyamine backbone after either a transaminative Zip reaction or a sequential fragmentation of the quasi-molecular ion. The second option has been proven by in-source CID experiments. The detailed knowledge of acylpentamine fragmentation mechanisms is essential for the correct characterization of isomeric compounds, particularly for coeluting compounds within complex mixtures such as spider venoms.  相似文献   

6.
The dissociation reactions of [M + H]+, [M + Na]+, and [M + Cu]+ ions of bradykinin (amino acid sequence RPPGFSPFR) and three bradykinin analogues (RPPGF, RPPGFSPF, PPGFSPFR) are examined by using 193-nm photodissociation and post-source decay (PSD) TOF-TOF-MS techniques. The photodissociation apparatus is equipped with a biased activation cell, which allows us to detect fragment ions that are formed by dissociation of short-lived (<1 mus) photo-excited ions. In our previously reported photodissociation studies, the fragment ions were formed from ions dissociating with lifetimes that exceeded 10 mus; thus these earlier photofragment ion spectra and post-source decay (PSD) spectra [composite of both metastable ion (MI) and collision-induced dissociation (CID)] were quite similar. On the other hand, short-lived photo-excited ions dissociate by simple bond cleavage reactions and other high-energy dissociation channels. We also show that product ion types and abundances vary with the location of the charge on the peptide ion. For example, H+ and Na+ cations can bind to multiple polar functional groups (basic amino acid side chains) of the peptide, whereas Cu+ ions preferentially bind to the guanidino group of the arginine side-chain and the N-terminal amine group. Furthermore, when Cu+ is the charge carrier, the abundances of non-sequence informative ions, especially loss of small neutral molecules (H2O and NH3) is decreased for both photofragment ion and PSD spectra relative to that observed for [M + H]+ and [M + Na]+ peptide ions.  相似文献   

7.
Ammodytoxins (Atxs) are presynaptically neurotoxic phospholipases present in Vipera ammodytes ammodytes snake venom. Atxs show a high sequence homology and contain 14 cysteines which form seven biologically relevant disulfide bridges-connecting non-neighboring cysteines. Formic acid cleavage was performed to confirm protein sequences by MALDI RTOF MS and resulted in 95.6% sequence coverage exhibiting only few formylations. Cysteine-containing peptides showed adjacent signals 2 and/or 4 Da lower (according to the number of cysteines present in the peptide) than the theoretical molecular weight indicating disulfide bridge rearrangement. Post-source decay (PSD) and high-energy collision-induced dissociation (CID) at 20 keV experiments showed fragmentation pattern unique for the reduced, thiol group containing and the oxidized, disulfide bridge harboring peptides. Besides typical low-energy fragment ions observed during PSD experiments (a-, b-, y-type ions), additional high-energy fragment ions (c-, x-, w-, d-type and internal fragments) of significant intensity were generated during fragmentation at 20 keV. In the case of charge directing N- and C-termini, x- and w-type ions were also observed during PSD. Good and up to complete sequence coverage was achieved for all studied peptides from Atxs in the case of high-energy CID, whereas PSD lacked information particularly for larger peptides.  相似文献   

8.
A new instrument that combines ion mobility spectrometry (IMS) separations with tandem mass spectrometry (MS(n)) is described. Ion fragmentation is achieved with vacuum ultraviolet photodissociation (VUV PD) and/or collision-induced dissociation (CID). The instrument is comprised of an approximately 1 m long drift tube connected to a linear trap that has been interfaced to a pulsed F(2) laser (157 nm). Ion gates positioned in the front and the back of the primary drift region allow for mobility selection of specific ions prior to their storage in the ion trap, mass analysis, and fragmentation. The ion characterization advantages of the new instrument are demonstrated with the analysis of the isomeric trisaccharides, melezitose and raffinose. Mobility separation of precursor ions provides a means of separating the isomers and subsequent VUV PD generates unique fragments allowing them to be distinguished.  相似文献   

9.
Photodissociation at 193 nm of some singly protonated peptides generated by matrix-assisted laser desorption/ionization was investigated using tandem time-of-flight mass spectrometry. For peptides with arginine at the C-terminus, x, upsilon, and w fragment ions were generated preferentially while a and d fragment ions dominated for peptides with arginine at the N-terminus. These are the same characteristics as photodissociation at 157 nm reported previously. Overall, the photodissociation spectra obtained at 157 and 193 nm were strikingly similar.  相似文献   

10.
Electrospray tandem mass spectrometry was used to study the dissociation reactions of [M+Cat]+ (Cat = Na+ and Li+) of Boc-carbo-beta3-peptides. The collision-induced dissociation (CID) spectra of [M+Cat-Boc]+ of these peptides are found to be significantly different from those of [M+H-Boc]+ ions. The spectra are more informative and display both C- and N-terminus metallated ions in addition to characteristic fragment ions of the carbohydrate moiety. Based on the fragmentations observed in the CID spectra of the [M+Cat-Boc]+ ions, it is suggested that the dissociation involves complexes in which the metal ion is coordinated in a multidentate arrangement involving the carbonyl oxygen atoms. The CID spectra of [M+Cat-Boc]+ ions of the peptide acids show an abundant N-terminal rearrangement ion [b(n)+17+Cat]+ which is absent for esters. Further, two pairs of positionally isomeric Boc-carbo-beta3-peptide acids, Boc-NH-Caa(S)-beta-hGly-OH (11) and Boc-NH-beta-hGly-Caa(S)-OH (12), and [Boc-NH-Caa(S)-beta-hGly-Caa(S)-beta-hGly-OH] (13) and [Boc-NH-beta-hGly-Caa(S)-beta-hGly-Caa(S)-OH] (14), were differentiated by the CID of [M+Cat-Boc]+ ions. The CID spectra of compounds 11 and 13 are significantly different from those of 12 and 14, respectively. The abundance of [b(n)+17+Cat]+ ions is higher for peptide acids 12 and 14 with a sugar group at the C-terminus when compared to 11 and 13 which contain a sugar moiety at the N-terminus. The observed differences between the CID spectra of these isomeric peptides are attributed to the difference in the preferential site of metal ion binding and also on the structure of the cyclic intermediate involved in the formation of the rearrangement ion.  相似文献   

11.
Several groups have investigated the photodissociation of peptide ions with ultraviolet light. Significant differences have been reported with 157 and 193 nm excitation. Recent studies have shown that the mass analyzer can also influence the observed photofragment distribution. Comparison of experiments using different peptides, wavelengths, and mass analyzers is undesirably complicated. In the present work, several peptides are analyzed with both 157 and 193 nm photodissociation in tandem-TOF and linear ion trap mass spectrometers. The results indicate that the fragment ion distribution can be influenced by both the photodissociation wavelength and the mass analyzer. The two wavelengths generate similar spectra in an ion trap but quite different results in a tandem-TOF instrument.  相似文献   

12.
The development of strategies based on mass spectrometry to help for deep structural analysis of acidic oligosaccharides remains topical. We thus examined the dissociation behavior of deprotonated ions of heparin-derived di- to tetra-saccharides under UV irradiation at 220 nm. Depending on the ionization state of the carboxylic groups, an oxidized species issued from electron photodetachment was observed in complement to photoinduced fragmentation of precursor ions. The influence of the charge location in the oligosaccharide dianions on the balance between photodissociation and electron photodetachment is examined and a way to direct the relaxation pathways, (i.e., dissociation versus electron detachment), is proposed using sodium adducts. The oxidized species was subjected to activated-electron photodetachment (activated-EPD) leading to complementary informative fragment ions to those issued from photodissociation. Directed photoinduced dissociation at 220 nm and activated-EPD should complement the more conventional CAD and IRMPD activation modes for deeper structural analysis of acidic oligosaccharides-derived anions.  相似文献   

13.
Ultraviolet photodissociation (UVPD) was evaluated as a technique for generating ion fragmentation information that is alternative and/or complementary to the information obtained by collision‐induced dissociation (CID). Ions trapped in a pressurized linear ion trap were dissociated using a 355 nm or a 266 nm pulsed laser. Comparisons of UVPD and CID spectra using a set of aromatic chromophore‐containing compounds (desmethyl bosentan, haloperidol, nelfinavir) demonstrated distinct characteristic fragmentation patterns resulting from photodissociation. The wavelength of light and the pressure of the buffer gas in the UVPD cell are important parameters that control fragmentation pathways. The wavelength effect is related to the absorption cross section, location of the chromophore and the energy carried by one photon. Thus, UV irradiation wavelength affects fragmentation pathways as well as the fragmentation rate. The pressure effect can be explained by collisional quenching of ‘slow’ fragmentation pathways. We observed that higher pressure of the buffer gas during UVPD experiments highlights unique fragment ions by suppressing slow fragmentation pathways responsible for CID‐like fragmentation patterns. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

14.
Ion-molecule complexes of the form Si(+)(C6H6)n and Si(+)(C6H6)(n)Ar are produced by laser vaporization in a pulsed nozzle cluster source. These clusters are mass-selected and studied with ultraviolet (355 nm) photodissociation and resonance-enhanced infrared photodissociation spectroscopy in the C-H stretch region of benzene. In the UV, Si(+)(C6H6)n clusters (n = 1-5) fragment to produce the Si(+)(C6H6)n mono-ligand species, suggesting that this ion has enhanced relative stability. IR photodissociation of Si(+)(C6H6)n complexes occurs by the elimination of benzene, while Si(+)(C6H6)(n)Ar complexes lose Ar. Resonances reveal C-H vibrational bands in the 2900-3300 cm(-1) region characteristic of the benzene ligand with shifts caused by the silicon cation bonding. The IR spectra confirm that the major component of the Si(+)(C6H6)n ions studied have the pi-complex structure rather than the isomeric insertion products suggested previously.  相似文献   

15.
The fragmentation patterns obtained by ultraviolet photodissociation (UVPD) and collision-induced dissociation (CID) in a quadrupole ion trap mass spectrometer were compared for peptides modified at their C-termini and at acidic amino acids. Attachment of Alexa Fluor 350 or 7-amino-4-methyl-coumarin chromophores at the C-terminal and acidic residues enhances the UV absorptivity of the peptides and all fragment ions that retain the chromophore, such as the y ions that contain the chromophore-modified C-terminus. Whereas CID results in the formation of the typical array of mainly y-type and a/b-type fragment ions, UVPD produces predominantly a/b-type ions with greatly reduced abundances of y ions. Immonium ions, mostly ones from aromatic or basic amino acids, are also observed in the low m/z range upon UVPD. UVPD of peptides containing two chromophore moieties (with one at the C-terminus and another at an acidic residue) results in even more efficient photodissociation at the expense of the annihilation of almost all diagnostic b and y ions containing the chromophore.  相似文献   

16.
Collision induced dissociation (CID) of sodiated peptide derivatives containing a nitrate ester functionality was used to regiospecifically generate three isomeric radicals of the model peptide Bz-Ala-Gly-OMe corresponding to radicals formed at: C(α) of the alanine residue [4+Na](+); C(α) of the glycine residue [5+Na](+); and the side chain of alanine [6+Na](+). The ion-molecule reactions of these peptide radicals were examined to model oxidative damage to peptides and to probe whether the radical sites maintain their integrity or whether they isomerise via intramolecular hydrogen atom transfer (HAT). Only [6+Na](+) is reactive towards O(2), forming the peroxyl radical [7+Na](+), which loses O(2), HO˙ and HO(2)˙ under CID. The radical ion [7 + Na](+) abstracts a hydrogen atom from 4-fluorothiophenol to form the hydroperoxide [8+Na](+), which upon CID fragments via the combined loss of HO˙ and CH(2)O. In contrast, all three of the isomeric sodiated radicals react with NO˙ and NO(2)˙ to form adducts. CID of the NO adducts only regenerates the radicals via NO˙ loss, thus providing no structural information. In contrast, CID of the NO(2) adducts gives rise to a range of product ions and the spectra are different for each of the three adducts, suggesting that the isomeric radicals [4+Na](+), [5+Na](+) and [6+Na](+) are produced as discrete species. Finally, CID of the NO(2) adducts was used to probe the rearrangement of the radicals [4+Na](+), [5+Na](+) and [6+Na](+) prior to their reaction with NO(2)˙: [6 + Na](+) rearranges to a mixture of [4+Na](+) and [5+Na](+) while [5+Na](+) rearranges to [4+Na](+).  相似文献   

17.
Ionized limonene and related isomeric compounds have been examined by collisional activation at both gaseous and solid targets. The gas-phase collision-induced dissociation (CID) experiments were performed as a function of collision energy and scattering angle and the surface-induced dissociation (SID) experiments as a function of collision energy, in order to vary systematically the internal energy deposited in the molecular ion. The virtual absence of retro-Diels–Alder (RDA) fragmentation upon conventional CID, as compared to its importance in the electron impact (EI) mass spectrum, the subject of a study by Boyd and coworkers, was confirmed. However, as the ion internal energy was increased by raising the collision energy or the scattering angle, RDA fragmentation was observed and it became a dominant mode of fragmentation for SID at collision energies in the range of 25–50 eV. The energy deposited into the colliding ion in the SID technique is compared with that deposited upon CID in the eV and keV energy ranges and upon EI. The order obtained is: SID > EI > low-energy, multiple-collision CID > high-energy, single-collision CID > low-energy, single-collision CID. The distribution of energies in SID is narrower than in the other techniques. High internal energies are accessible by increasing the scattering angle in CID; however, this is accompanied by an increase in the width of the internal energy distribution, and it is therefore not possible to channel fragmentation predominantly into RDA by this method. It is concluded that RDA fragmentation of limonene is a high-energy process and that this is the explanation for its behavior. Isomerization, occurring through 1,3-hydrogen migrations of the molecular ions of limonene, isolimonene, terpinolene and α-terpinene, was investigated and long-lived molecular ions of the first three compounds were found to maintain distinct structures.  相似文献   

18.
Tandem mass spectrometry has been applied to differentiate three sets of o-, m- and p-methyl, -methoxy and -nitro-substituted-6-phenyl-dibenzo(d,f)(1,3)dioxepines. Collision-induced dissociation (CID) experiments have been carried out on 2-phenylbenzo[b]furan fragment ions, which originate from the decomposition of the molecular ions after their EI-induced isomerization to spirocyclic structures. With the exception of m- and p-methylphenylbenzo[b]furan isomers, which display identical CID mass spectra, the three isomeric methoxy- and nitrophenylbenzo[b]furan fragment ions display very characteristic CID behavior which allows unequivocal differentiation of the 6-phenyl-dibenzo(d,f)(1,3)dioxepine isomers. 6-(o-nitrophenyl)-dibenzo(d,f)(1,3)dioxepine isomer, does not form a 2-(o-nitrophenyl)benzo[b]furan ion and, therefore, it can be differentiated from the m- and p- isomers based on the mere EI mass spectra. Furthermore, it shows a characteristic ion most likely due to an ortho effect between the nitro group and the dioxepine ring. Multiple stage mass spectrometric techniques (MSn), labeled derivatives and reference compounds were used in order to gain additional information on the structures of product ion from the CID fragmentation.  相似文献   

19.
The fragmentation patterns of hydrazide-conjugated and reductively aminated oligosaccharides, including lacto-N-fucopentaoses and lacto-N-difucohexaoses, produced on collisionally induced dissociation (CID) and ultraviolet photodissociation (UVPD) in a quadrupole ion trap are presented. The two derivatization methods generate different cross-ring cleavages on UVPD and CID. UVPD of hydrazide-conjugated oligosaccharides yield predominant (2, 4)A-type cross-ring cleavage ions. In contrast, UVPD of aminated oligosaccharides results mainly in (0, 1)A-type ions. Moreover, more extensive dual-cleavage pathways (i.e. internal fragment ions) were observed on UVPD.  相似文献   

20.
High-energy collision-induced dissociation (CID) mass spectrometry provides a rapid and sensitive means for determining the primary sequence of peptides. The low-mass region (below mass 300) of a large number of tandem CID spectra of peptides has been analyzed. This mass region contains several types of informative fragment ions, including dipeptide ions, immonium ions, and other related ions. Useful low-mass ions are also present in negative-ion CID spectra. Immonium ions (general structure [H2N=CH-R]+, where R is the amino acid side chain) and related ions characteristic of specific amino acid residues give information as to the presence or absence of these residues in the peptide being analyzed. Tables of observed immonium and reiated ions for the 20 standard amino acids and for a number of modified amino acids are presented. A database consisting of 228 high-energy CID spectra of peptides has been established, and the frequency of occurrence of various ions indicative of specific ammo acid residues has been determined. Two model computer-aided schemes for analysis of the ammo-acid content of unknown peptides have been developed and tested against the database.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号