首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Two one‐component, double‐chromophoric thioxanthone photoinitiators, namely TX‐EDA and TX‐DETA were synthesized by the reaction of thioxanthone aldehyde (TX‐A) with ethylenediamine (EDA) and diethylenetriamine (DETA), respectively via a facile Schiff base reaction. Both photoinitiators were characterized by spectral analysis and photobleaching studies. DFT calculations are employed to reveal the contribution of the different orbitals to the excitation of the initiators. The double‐chromophoric nature of the initiators gives rise to an increased absorption in the near UV region when compared with the pristine TX‐A. Photoinitiated polymerization of various vinyl monomers with TX‐EDA and TX‐DETA has been investigated in the presence and absence of a co‐initiator and compared for formulations consisting of precursor TX‐A. In addition, real‐time FTIR spectroscopic studies were performed in methyl methacrylate polymerization with both initiators. The higher efficiency observed with TX‐DETA may be attributed to the additional hydrogen donating sites adjacent to nitrogen atoms. © 2017 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2017 , 55, 3475–3482  相似文献   

2.
A thioxanthone (TX) derivative with the additional carbazole chromophore, namely thioxanthone‐carbazole (TX‐C) was synthesized and characterized. The photophysical properties and its efficiency to polymerize methyl methacrylate both in the presence and absence of N,N‐dimethylaniline (DMA) as coinitiator was investigated and compared with that of the commercially available TX. TX‐C was found to display better photophysical properties and in both cases initiate polymerization more efficiently. Detailed real‐time Fourier transform infrared studies revealed that high polymerization rates can be obtained when TX‐C in conjunction with DMA was used. © 2010 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2010  相似文献   

3.
The photochemical and photophysical properties of new polymeric photoinitiators (PPIs) containing pendant thioxanthone (TX) and amine moieties are studied. The PPIs are synthesized by copolymerization of tert‐butyl 2‐((9‐oxo‐9H‐thioxanthen‐2‐yloxy)methyl)acrylate (TX1) with N,N‐dimethylaminoethyl methacrylate (DMAEM) at two different ratios using free radical polymerization. UV–vis spectra indicate that PPIs possess similar absorption characteristics to TX1 in the violet range (~400 nm; absorption red‐shift 20 nm). The photochemical mechanisms are studied by electron spin resonance (ESR), steady state photolysis, laser flash photolysis, and cyclic voltammetry. ESR studies indicate formation of two different aminoalkyl radicals on the hydrogen donor amine. The triplet state of the PPIs is short‐lived compared to isopropyl thioxanthone and TX1, due to the built‐in amine functionality. Photopolymerization of trimethylolpropane triacrylate (TMPTA) initiated by these photoinitiators under LED exposure at 385 and 405 nm using real‐time FTIR spectroscopy shows that they exhibit higher efficiency than TX/N‐methyldiethanolamine (MDEA) and TX1/MDEA systems with the advantage of a much higher molecular weight that can be very helpful to overcome migration issues. © 2016 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2016 , 54, 3370–3378  相似文献   

4.
Phosphorus‐containing vinyl esters and vinyl carbamates were synthesized as new biocompatible and degradable photopolymers. Reactivity of the monomers with one, two, and three polymerizable double bonds was evaluated by photo‐differential scanning calorimetry. With respect to their potential application in the biomedical field, studies on cytotoxicity, mechanical stability, and hydrolytic erosion behavior of the poly(vinyl alcohol)‐based derivatives were performed. © 2010 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 48: 2916–2924, 2010  相似文献   

5.
A new class of temperature and pH dual‐responsive and injectable supramolecular hydrogel was developed, which was formed from block copolymer poly(ethylene glycol)‐block‐poly[(2‐dimethylamino)ethyl methacrylate] (PEG‐b‐PDMAEMA) and α‐cyclodextrin (α‐CD) inclusion complexes (ICs). The PEG‐b‐PDMAEMA diblock copolymers with different ratio of ethylene glycol (EG) to (2‐dimethylamino)ethyl methacrylate (DMAEMA) (102:46 and 102:96, respectively) were prepared by atom transfer radical polymerization (ATRP). 1H NMR measurement indicated that the ratio of EG unit to α‐CD in the resulted ICs was higher than 2:1. Thermal analysis showed that thermal stability of ICs was improved. The rheology studies showed that the hydrogels were temperature and pH sensitive. Moreover, the hydrogels were thixotropic and reversible. The self‐assembly morphologies of the ICs in different pH and ionic strength environment were studied by transmission electron microscopy. The formed biocompatible micelles have potential applications as biomedical and stimulus‐responsive material. © 2010 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 48: 2143–2153, 2010  相似文献   

6.
A new vinyl azide monomer, 2‐chlorallyl azide (CAA), has been synthesized from commercially available reagent in one step. The reversible addition fragmentation chain transfer (RAFT) copolymerization of CAA with methyl acrylate (MA) was carried out at room temperature using a redox initiator, benzoyl peroxide (BPO)/N,N‐dimethylaniline (DMA), in the presence of benzyl 1H‐imidazole‐1‐carbodithioate (BICDT). The polymerization results showed that the process bears the characteristics of controlled/living radical polymerizations, such as the molecular weight increasing linearly with the monomer conversion, the molecular weight distribution being narrow, and a linear relationship existing between ln([M]0/[M]) and the polymerization time. Chain extension polymerization was performed successfully to prepare block copolymer. Furthermore, the azide copolymers were functionalized by CuI‐catalyzed “click” reaction with alkyne‐containing poly(ethylene glycol) (PEG) to yield graft copolymers with hydrophilic PEG side chains. Surface modification of the glass sheet was successfully achieved via the crosslinking reaction of the azide copolymer under UV irradiation at ambient temperature. © 2010 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 48: 1348–1356, 2010  相似文献   

7.
The poly(ethylene glycol)/poly(2‐(N,N‐dimethylamino)ethyl methacrylate) (PEG/PDMAEMA) double hydrophilic block copolymers were synthesized by atom transfer radical polymerization using mPEG‐Br or Br‐PEG‐Br as macroinitiators. The narrow molecular weight distribution of PEG/PDMAEMA block copolymers was identified by gel permeation chromatography results. The thermosensitivity of PEG/PDMAEMA block copolymers in aqueous solution was revealed to depend significantly on pH, ionic strength, chain structure, and concentration of the block copolymers. By optimizing these factors, the cloud point temperature of PEG/PDMAEMA block copolymers can be limited within body temperature range (30–37 °C), which suggests that PEG/PDMAEMA block copolymers could be a good candidate for drug delivery systems. © 2010 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 48: 503–508, 2010  相似文献   

8.
Novel thioxanthone (TX) derivatives are used as versatile photoinitiators upon visible light‐emitting diode (LED; e.g., 405, 425, and 450 nm) exposure. The mechanisms for the photochemical generation of reactive species (i.e., cations and free radicals) produced from photoinitiating systems based on the photoinitiator and an iodonium salt, tris(trimethylsilyl)silane, or an amine, were studied by UV–vis spectroscopy, fluorescence, cyclic voltammetry, steady‐state photolysis, and electron spin resonance spin‐trapping techniques. The reactive species are particularly efficient for cationic, free radical, hybrid, and thiol‐ene photopolymerizations upon LED exposure. The optimized photoinitiating systems exhibit higher efficiency than those of reference systems (i.e., isopropyl TX‐based photoinitiating systems), especially in the visible range. According to their beneficial features, these photoinitiating systems have considerable potential in photocuring applications. © 2017 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2017 , 55, 4037–4045  相似文献   

9.
A series of supramolecular inclusion complex (IC) films were formed by threading α‐cyclodextrin (α‐CD) molecules over poly(ethylene glycol) (PEG), according to the designed ratio of α‐CD/PEG. Because of containing α‐CD‐PEG inclusion crystallites as physical crosslinks and uncovered PEG crystallites as “switch phase”, the resulting supramolecular α‐CD‐PEG partial ICs displayed a shape memory effect. The properties of the materials were investigated by 1H‐NMR, X‐ray diffraction (XRD), differential scanning calorimetry (DSC), dynamic mechanical analysis (DMA), and swelling measurement. It was found that the casting temperature, solvent, and the ratio of α‐CD‐PEG inclusion/PEG had great influence on the formation and properties of α‐CD‐PEG partial ICs. The modes of complexes on different conditions were proposed. © 2010 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 48: 951–957, 2010  相似文献   

10.
Thioxanthone–anthracene‐9‐carboxylic acid (TX‐ANCA) namely 14‐oxo‐14H‐naphthol [2,3‐b]thioxanten‐12‐carboxylic acid, is synthesized and characterized as part of our continuing interest for syntheses of polyaromatic initiators. Photoinitiator, TX‐ANCA have good absorption properties in the UV and visible region of the electromagnetic spectrum (ɛ370: 9080 M−1cm−1, ɛ430: 6151 M−1 cm−1). The fluorescence quantum yield is calculated as 0.1 which is slightly higher than of the parent thioxanthone compound (φf: 0.07). The phosphorescence lifetime is found to be 39 ms. The possible initiating mechanism of TX‐ANCA is based on photoexcitation of TX‐ANCA and quenching of triplet excited states of TX‐ANCA by molecular oxygen generates singlet oxygen. Singlet oxygen reacts with the anthracene moiety of TX‐ANCA possibly forms an endoperoxide. The endoperoxides undergoes photochemical or thermal decomposition to form radicals which are able to initiate free radical polymerization. © 2018 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2018 , 56, 1878–1883  相似文献   

11.
A novel method for surface modification of UV‐cured epoxy network was described. Photoinitiated cationic copolymerization of a bisepoxide, namely 3,4‐epoxy cyclohexylmethyl 3,4‐epoxycyclohexanecarboxylate (EEC) with epibromohydrine (EBH) by using a cationic photoinitiator, [4‐(2‐methylpropyl)phenyl]4‐methylphenyl‐iodonium hexafluorophosphate, in propylene carbonate solution was studied. The real‐time Fourier transform infrared spectroscopic, gel content determination and thermal characterization studies revealed that both EEC and EBH monomers take part in the polymerization and epoxy network possessing bromomethyl functional groups was obtained. The bromine functions of the cured product formed on the glass surface were converted to azide functionalities with sodium azide. Independently prepared alkyne functional poly(ethylene glycol) (PEG) was subsequently anchored to azide‐modified epoxy surface by a “click” reaction. Surface modification of the network through incorporation of hydrophilic PEG chain was evidenced by contact angle measurements. © 2010 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 48: 2862–2868, 2010  相似文献   

12.
Poly(ethylene glycol)‐grafted‐multiwalled carbon nanotube (MWNT‐g‐PEG) was synthesized by a coupling reaction and formed inclusion complexes (ICs) after selective threading of the PEG segment of the MWNT‐g‐PEG through the cavities of α‐cyclodextrins (α‐CDs) units. The polypseudorotaxane structures of the as‐obtained hydrogels were confirmed by 1H NMR, X‐ray diffraction and DSC analyses. The complexation of the PEG segments with α‐CDs and the hydrophobic interaction between the MWNT resulted in the formation of supramolecular hybrid hydrogels with a strong network. Thermal analysis showed that the thermal stability of the hydrogel was substantially improved by up to 100 °C higher than that of native hydrogel. The resultant hybrid hydrogels were found to be thixotropic and reversible, and could be applied as a promising injectable drug delivery system. The mechanical strength of the hybrid hydrogels was greatly improved in comparison with that of the corresponding native hydrogels. © 2010 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 48: 3145–3151, 2010  相似文献   

13.
A relatively low‐temperature crosslinking method for phenylethynyl (PE) end‐capped oligomides was developed. PE end‐capped oligomides are typically cured into crosslinked polyimides at 370 °C for about 1 h. The addition of a low viscosity mixed‐solvent of N‐methylpyrrolidinone (NMP)/dimethyl ether of polyethylene glycol (M = 250 g/mol), NMP/DM‐PEG‐250, or NMP/polyethylene glycol (M = 400 g/mol), NMP/PEG‐400, as film forming medium for PE‐end‐capped oligomides was investigated. Fourier transform infrared spectroscopy and 13C NMR showed that the mixed solvent addition was effective for achieving low‐temperature crosslinking of the ethynyl end‐caps over the temperature range 200–250 °C. The low temperature crosslinking process was explained by thermolysis of the PEG molecules over this temperature range forming free radical species such as ~CH2CH2O· or ~CH2CH2· which initiate cure of the ethynyl groups resulting in a cross linked polyimide membrane. The PEG solvents also provide a radical source for the degradation polymerization of the solvents to a water and NMP insoluble polymer, which formed a miscible blend with the crosslinked membrane. Glass transition temperature (differential scanning calorimetry) data and thermo gravimetric analysis data provide evidence for the miscible blend. © 2010 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 48: 3950–3963, 2010.  相似文献   

14.
A facile synthetic pathway to miktoarm star copolymers with multiple arms has been developed by combining reversible addition–fragmentation chain transfer (RAFT) arm‐first technique and aldehyde–aminooxy “click” coupling reaction. Star polystyrene (PS) with aldehyde functionalized core was initially prepared by RAFT arm‐first technique via crosslinking of the preformed linear macro‐RAFT agents using a newly designed aldehyde‐containing divinyl compound 6,6′‐(ethane‐1,2‐diylbis(oxy))bis(3‐vinylbenzaldehyde) (EVBA). It was then used as a multifunctional coupling agent for the subsequent formation of the second generation poly(ethylene glycol) (PEG) arms via the click coupling reaction between its aldehyde groups and aminooxy‐terminated PEGs. The possible formation of PS‐PEG miktoarm star copolymer with Janus‐like segregated structure in cyclohexanone was also investigated. © 2010 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 48: 3323–3330, 2010  相似文献   

15.
Well‐defined mono‐ and bifunctional, phenanthroline‐terminated poly(ethylene glycol) and polyisobutylene capable of polymer network formation were synthesized. The starting materials mono‐ and bi‐phenanthroline‐ (phen) terminated poly(ethylene glycols) (mPEG‐phen, phen‐PEG‐phen) and polyisobutylenes (PIB‐phen, phen‐PIB‐phen) were prepared by the Williamson synthesis and characterized by means of 1H NMR and MALDI‐TOF mass spectrometry. According to UV–Vis spectrophotometry and ESI‐TOF mass spectrometry, the phenanthroline‐terminated polymers underwent quantitative complex formation with ferrous ions in solution. The aqueous solution of mPEG‐phen shows self‐assembly behavior. Important parameters, such as critical micelle concentration and hydrodynamic radius of the aggregates were also determined. © 2010 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 48: 2709–2715, 2010  相似文献   

16.
Interconnected microcellular polymeric monoliths having unexpected high mechanical strength have been prepared using the high internal phase emulsion (HIPE) methodology. Oil‐in water concentrated emulsions of aqueous 1‐vinyl‐5‐amino [1,2,3,4]tetrazole (1‐VAT) mixed with a low molar ratio (7%) of N,N′‐methylenebisacrylamide as crosslinking agent were prepared using dodecane as dispersed phase and a mixture of hydrophilic surfactants. “Reverse” polyHIPE materials were obtained after radical copolymerization, solvent extraction, and drying. Their morphology, chemical composition, and physicochemical behavior are discussed. © 2010 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 48: 2942–2947, 2010  相似文献   

17.
Nanoparticles formed from amphiphilic block copolymers can be used as drug delivery vehicles for hydrophilic therapeutics. Poly(ethylene glycol) (PEG)‐peptide copolymers were investigated for their self‐assembling properties and as consequent potential delivery systems. Mono‐ and dihydroxy PEGs were functionalized with a pentavaline sequence bearing Fmoc end groups. The molecular weight of the PEG component was varied to evaluate copolymer size and block number. These di‐ and tri‐block copolymers readily self‐assemble in aqueous solution with critical aggregation concentrations (CACs) of 0.46–16.29 μM. At concentrations above the CAC, copolymer solutions form spherical assemblies. Dynamic light scattering studies indicate these aggregates have a broad size distribution, with average diameters between 33 and 127 nm. The copolymers are comprised β‐conformations that are stable up to 80 °C, as observed by circular dichroism. This peptide secondary structure is retained in solutions up to 50% MeOH as well. The triblock copolymers proved to be the most stable, with copolymers synthesized from 10 kDa PEG having the most stable particles. Loading of carboxyfluorescein at 2–5 mol % shows that these copolymers have the potential to encapsulate hydrophilic drugs for delivery applications. © 2010 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2011  相似文献   

18.
The reversible addition‐fragmentation chain transfer (RAFT) polymerization of N‐vinylcarbazole (NVK) mediated by macromolecular xanthates was used to prepare three types of block copolymers containing poly(N‐vinylcarbazole) (PVK). Using a poly(ethylene glycol) monomethyl ether based xanthate ( PEG‐X ), the RAFT polymerization of NVK proceeded in a controlled way to afford a series of PEG‐b‐PVK with different PVK chain lengths. Successive RAFT polymerization of NVK and vinyl acetate (VAc) with a small molecule xanthate ( X1 ) as the chain transfer agent was tested to prepare PVK‐b‐PVAc. Though both monomers can be homopolymerized in a controlled manner with this xanthate, only by polymerizing NVK first could give well‐defined block copolymers. The xanthate groups in the end of PVK could be removed by radical‐induced reduction using tributylstannane, and PVK‐b‐PVA was obtained by further hydrolysis of PVK‐b‐PVAc under basic conditions. © 2010 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2010  相似文献   

19.
Thermoregulated phase‐transfer catalysis for the transfer hydrogenation of 2‐octanone in 2‐propanol/H2O biphasic media was achieved with ruthenium‐bearing microgel‐core star polymers with amphiphilic, thermosensitive poly(ethylene glycol) (PEG) arms [Ru(II)‐PEG star], which were directly prepared by the ruthenium‐catalyzed living radical polymerization in conjunction with a phosphine ligand‐carrying styrene derivative. The star polymers were first placed in the aqueous (lower) layer at room temperature and immediately moved into the organic (upper) layer at 100 °C, and once again, moved down to the aqueous layer (lower) upon cooling the solution to room temperature. The Ru(II)‐PEG star catalyst was clearly superior to the original Ru(II) catalyst and related non‐microgel catalysts [Ru(II)‐PEG block] in terms of activity and recovery/recycle, due to the unique designer structure of the microgel‐core star polymers. Other substrates (less hydrophobic alkyl ketones and aromatic ketone) were also efficiently hydrogenated into the corresponding sec‐alcohols with the star catalyst in aqueous media. © 2009 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 48: 373–379, 2010  相似文献   

20.
The suitability of various peroxide initiators for a radical polymerization‐based self‐healing system is evaluated. The initiators are compared using previously established criteria in the design of ring opening metathesis polymerization‐based self‐healing systems. Benzoyl peroxide (BPO) emerges as the best performing initiator across the range of evaluation criteria. Epoxy vinyl ester resin samples prepared with microcapsules containing BPO exhibited upwards of 80% healing efficiency in preliminary tests in which a mixture of acrylic monomers and tertiary amine activator was injected into the crack plane of the sample after the initial fracture. © 2010 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 48: 2698–2708, 2010  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号