首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A simple but efficient strategy has been developed for the synthesis of novel di‐, tri‐, multi‐, and star‐block copolymers comprising poly(ethylene glycol) (PEG) and polyisobutylene (PIB) blocks. The synthesis principle involves the coupling of appropriately terminally functionalized PEG and PIB sequences, specifically the hydrosilation of mono‐, di‐, and tetra‐allyl‐telechelic PEGs (PEG‐allyl, allyl‐PEG‐allyl, and C(‐PEG‐allyl)4 by mono‐ and di‐Si(CH3)2H telechelic PIBs (PIB‐SiH and HiS‐PIB‐SiH). Representative block copolymers, for example, PEG‐PIB, PIB‐PEG‐PIB, (‐PIB‐PEG‐)n, and C(‐PEG‐PIB)4 have been assembled and their structures determined by 1H and 13C NMR spectroscopy. The bulk and surface morphology of select triblocks have been investigated by DSC and AFM and the findings interpreted in terms of phase‐separated PEG and PIB microdomains. The swelling behavior in water of various block copolymers also has been studied. Block copolymers containing 50–70 wt % PIB produce hydrogels, the integrity of which is maintained by physical crosslinks by PIB segments. © 2000 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 38: 3200–3209, 2000  相似文献   

2.
The molar mass determination of block copolymers, in particular amphiphilic block copolymers, has been challenging with chromatographic techniques. Therefore, methoxy poly(ethylene glycol)‐b‐poly(styrene) (mPEG‐b‐PS) was synthesized by atom transfer radical polymerization (ATRP) and characterized in detail not only by conventional chromatographic techniques, such as size exclusion chromatography (SEC), but also by matrix‐assisted laser/desorption ionization tandem mass spectrometry (MALDI‐TOF MS/MS). As expected, different molar mass values were obtained in the SEC measurements depending on the calibration standards (either PEG or PS). In contrast, MALDI‐TOF MS/MS analysis allowed the molar mass determination of each block, by the scission of the weakest point between the PEG and PS block. Thus, fragments of the individual blocks could be obtained. The PEG block showed a depolymerization reaction, while for the PS block fragments were obtained in the monomeric, dimeric, and trimeric regions as a result of multiple chain scissions. The block length of PEG and PS could be calculated from the fragments recorded in the MALDI‐TOF MS/MS spectrum. Furthermore, the assignment of the substructures of the individual blocks acquired by MALDI‐TOF MS/MS was accomplished with the help of the fragments that were obtained from the corresponding homopolymers. © 2010 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2010  相似文献   

3.
A fast, one pot, solvent‐free and metal‐free synthesis of poly‐ε‐caprolactone and poly(ethylene oxide) block copolymers is reported. Copolymers with different molar mass, different hydrophilic to lipophilic balance, high degree of conversion and narrow molar mass dispersity have been obtained by organocatalyzed ring opening polymerization of ε‐caprolactone in presence of mono‐ or diol‐poly(ethylene oxide) as initiator and fumaric acid as catalyst. A new biocompatible and environmental friendly purification method is presented, exploiting the upper critical solution temperature of these class of copolymers in ethanol. The phase diagrams of the synthesized copolymers in ethanol are also reported. © 2016 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2016 , 54, 2992–2999  相似文献   

4.
The rod‐coil molecules with n‐shaped rod building block, consisting of an anthracene unit and two biphenyl groups linked together with acetylenyl bonds at the 1,8‐position of anthracene as a rigid rod segment, and the alkyl or alkyloxy chains with various length (i.e., methoxy‐ ( 1 ), octyl‐ ( 2 ), hexadecyl‐ ( 3 )) at the 10‐position of anthracene and poly(ethylene oxide) with the number of repeating units of 7 connected with biphenyl as coil segments were synthesized. The molecular structures were characterized by 1H NMR and MALDI‐TOF mass spectroscopy. The self‐assembling behavior of new type of molecules 1–3 was investigated by means of DSC, POM, and SAXS at the bulk state. These molecules with a n‐shaped rod building block segment self‐assemble into supramolecular structures through the combination of π–π stacking of rigid rod building blocks and microphase separation of the rod and coil blocks. SAXS studies reveal that molecules 1 and 2 show hexagonal columnar and rectangular columnar structures in the liquid crystalline phase, respectively; meanwhile, molecules 1–3 self‐organize into lamellar structures in the crystalline state. In addition, self‐assembling studies of molecules 1–3 by DLS and TEM indicated that these molecules self‐assemble into elongated nanofibers in aqueous medium. © 2010 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 48: 1415–1422, 2010  相似文献   

5.
A complete library of poly(2‐oxazoline) block copolymers was synthesized via cationic ring opening polymerization for the characterization by two different soft ionization techniques, namely matrix‐assisted laser desorption/ionization time‐of‐flight mass spectrometry (MALDI‐TOF MS) and electrospray ionization quadrupole time‐of‐flight mass spectrometry (ESI‐Q‐TOF MS). In addition, a detailed characterization was performed by tandem MS to gain more structural information about the block copolymer composition and its fragmentation behavior. The fragmentation of the poly(2‐oxazoline) block copolymers revealed the desired polymer structure and possible side reactions, which could be explained by different mechanisms, like 1,4‐ethylene or hydrogen elimination and the McLafferty +1 rearrangement. Polymers with aryl side groups showed less fragmentation due to their higher stability compared to polymers with alkyl side groups. These insights represent a further step toward the construction of a library with fragments and their fragmentation pathways for synthetic polymers, following the successful examples in proteomics. © 2010 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2010  相似文献   

6.
Three methyl end‐capped oligo(ethylene glycol) (MOEG) ethers ( 1b‐d ) and a methoxyderivative ( 1a ) of benzofulvene monomer BF3k were synthesized and induced to polymerize spontaneously by solvent removal to obtain soluble π‐stacked polymers bearing densely grafted MOEG side chains (poly‐ 1b – d ) and model polymer poly‐ 1a. The physicochemical features (e.g., solubility, NMR, MALDI‐TOF, and absorption/emission spectra, as well as MWD, conformation plot, and thermal properties) of the synthesized polymers were compared in a structure‐property relationship study. This approach afforded the following evidence. The structure of poly‐ 1a – d is very similar to that of BF3k , suggesting that the polymerization mechanism is not affected by the presence of the electron‐rich methoxy group or bulkier MOEG side chains. However, the latter appear to be capable of affecting the conformational behavior of the polymer backbone. The solubility of poly‐ 1a – d depends on the number of the oligo(ethylene glycol) monomeric units. In particular, poly‐ 1d , featuring a long MOEG side chain (n = 9), shows an amphiphilic character and is soluble in a number of organic solvents, whereas it interacts with water to give isolated macromolecules in equilibrium with nanosized water‐soluble aggregates. © 2010 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 48: 2446–2461, 2010  相似文献   

7.
Various novel block cationomers consisting of polyisobutylene (PIB) and poly[2‐(dimethylamino)ethyl methacrylate] (PDMAEMA) segments were synthesized and characterized. The specific targets were various molecular weight diblocks (PIB‐b‐PDMAEMA+) and triblocks (PDMAEMA+b‐PIB‐b‐PDMAEMA+), with the PIB blocks in the DPn = 50–200 range (number‐average molecular weight = 3,000–9000 g/mol) connected to blocks of PDMAEMA+ cations in the DPn = 5–20 range (where DP is the number‐average degree of polymerization). The overall synthetic strategy for the preparation of these block cationomers had four steps: (1) synthesis by living cationic polymerization of mono‐ and diallyltelechelic polyisobutylenes, (2) end‐group transformation to obtain PIBs fitted with termini capable of mediating the atom transfer radical polymerization (ATRP) of DMAEMA, (3) ATRP of DMAEMA, and (4) quaternization of PDMAEMA to PDMAEMA +I? by CH3I. Scheme 1 shows the microarchitecture and outlines the synthesis route. Kinetic and model experiments provided guidance for developing convenient synthesis methods. The microarchitecture of PIB–PDMAEMA di‐ and triblocks and the corresponding block cationomers were confirmed by 1H NMR and FTIR spectroscopy and solubility studies. © 2002 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 40: 3679–3691, 2002  相似文献   

8.
The synthesis and self‐assembly of peptide–polymer conjugates into fibrillar nanostructures are reported, based on the amyloidogenic peptide KLVFF. A strategy for rational synthesis of polymer–peptide conjugates is documented via tethering of the amyloidogenic peptide segment LVFF (Aβ17‐20) and its modified derivative FFFF to the hydrophilic poly(ethylene glycol) monomethyl ether (mPEG) polymer via thio‐bromo based “click” chemistry. The resultant conjugates mPEG‐LVFF‐OMe and mPEG‐FFFF‐OMe are purified via preparative gel permeation chromatography technique (with a yield of 61% and 64%, respectively), and are successfully characterized via combination of spectroscopic and chromatographic methods, including electrospray ionization time‐of‐flight mass spectrometry. The peptide‐guided self‐assembling behavior of the as‐constructed amphiphilic supramolecular materials is further investigated via transmission electron microscopic and circular dichroism spectroscopic analysis, exhibiting fibrillar nanostructure formation in binary aqueous solution mixture.  相似文献   

9.
A series of RuII heterodinuclear complexes of ABA ‐type with electron‐deficient bis‐terpyridines as building blocks was synthesized by (R‐tpy)RuIIICl3 complexation. These compounds were characterized by NMR spectroscopy, MALDI‐TOF, ESI‐TOF mass spectrometry, and elemental analysis. The results were compared with a coil‐rod‐coil RuII metallo‐supramolecular copolymer, which was synthesized by bis‐complex formation between a hydrophilic ω‐terpyridine poly(ethylene glycol) RuII mono‐complex and a hydrophobic bis‐terpyridine‐functionalized rigid core. This amphiphilic RuII triblock copolymer showed self‐assembly to clusters and micelles in aqueous solution, which was studied by transmission electron microscopy and dynamic light scattering. Applying velocity sedimentation experiments the number of amphiphilic RuII ABA triblock copolymer molecules within the micelles could be estimated. Finally, the photophysical properties of the RuII supramolecular assemblies were investigated by UV–vis spectroscopy. © 2011 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2011  相似文献   

10.
Two new ring opening polymerization (ROP) initiators, namely, (3‐allyl‐2‐(allyloxy)phenyl)methanol and (3‐allyl‐2‐(prop‐2‐yn‐1‐yloxy)phenyl)methanol each containing two reactive functionalities viz. allyl, allyloxy and allyl, propargyloxy, respectively, were synthesized from 3‐allylsalicyaldehyde as a starting material. Well defined α‐allyl, α′‐allyloxy and α‐allyl, α′‐propargyloxy bifunctionalized poly(ε‐caprolactone)s with molecular weights in the range 4200–9500 and 3600–10,900 g/mol and molecular weight distributions in the range 1.16–1.18 and 1.15–1.16, respectively, were synthesized by ROP of ε‐caprolactone employing these initiators. The presence of α‐allyl, α′‐allyloxy and α‐allyl, α′‐propargyloxy functionalities on poly(ε‐caprolactone)s was confirmed by FT‐IR, 1H, 13C NMR spectroscopy, and MALDI‐TOF analysis. The kinetic study of ROP of ε‐caprolactone with both the initiators revealed the pseudo first order kinetics with respect to ε‐caprolactone consumption and controlled behavior of polymerization reactions. The usefulness of α‐allyl, α′‐allyloxy functionalities on poly(ε‐caprolactone) was demonstrated by performing the thiol‐ene reaction with poly(ethylene glycol) thiol to obtain (mPEG)2‐PCL miktoarm star copolymer. α‐Allyl, α′‐propargyloxy functionalities on poly(ε‐caprolactone) were utilized in orthogonal reactions i.e copper catalyzed alkyne‐azide click (CuAAC) with azido functionalized poly(N‐isopropylacrylamide) followed by thiol‐ene reaction with poly(ethylene glycol) thiol to synthesize PCL‐PNIPAAm‐mPEG miktoarm star terpolymer. The preliminary characterization of A2B and ABC miktoarm star copolymers was carried out by 1H NMR spectroscopy and gel permeation chromatography (GPC). © 2015 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2016 , 54, 844–860  相似文献   

11.
A novel amphiphilic poly(ethylene glycol)‐block‐poly(γ‐cholesterol‐L ‐glutamate) (mPEG–PCHLG) diblock copolymer has been synthesized. The mPEG–PCHLG copolymer has good biocompatibility and low toxicity. The mPEG–PCHLG copolymers could aggregate into nanoparticles with PCHLG blocks as the hydrophobic core and PEG blocks as the hydrophilic shell through emulsion solvent evaporation method. The copolymers were characterized by nuclear magnetic resonance spectroscopy, mass spectrum, Fourier transform infrared spectroscopy, and gel permeation chromatography. The particle sizes, size distributions, and zeta potentials of nanoparticles can also be determined by dynamic light scattering and transmission electron microscopy. This work provides a new and facile approach to prepare amphiphilic block copolymer nanoparticles with controllable performances. This novel copolymer may have potential applications in drug delivery and bioimaging applications.© 2012 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2012  相似文献   

12.
Nanophase‐separated poly(2‐hydroxyethyl methacrylate)‐l‐polyisobutylene (PHEMA‐l‐PIB) amphiphilic conetworks were obtained by crosslinking α,ω‐bismethacrylate‐terminated polyisobutylene (PIB) via copolymerization with silylated 2‐hydroxyethyl methacylate, followed by the hydrolysis of the silylether groups. Morphology development of a sample containing 64% PIB was monitored by means of transmission electron microscopy (TEM), atomic force microscopy (AFM), and small‐angle X‐ray scattering. For comparison, the morphology of a sample containing 53% PIB was investigated by AFM. The dry conetworks exhibited hydrophilic and hydrophobic phases with average 8–10‐nm domain sizes and were swellable in water as well as in heptane. Swelling amphiphilic conetworks with aqueous cadmium–chloride solution followed by exposure to H2S resulted in nanosized CdS clusters located in the amphiphilic conetworks, that is, for the first time, new inorganic–organic hybrid materials composed of CdS semiconducting nanocrystals and PHEMA‐l‐PIB amphiphilic conetworks were prepared. © 2001 John Wiley & Sons, Inc. J Polym Sci B Part B: Polym Phys 39: 1429–1436, 2001  相似文献   

13.
This article demonstrates a new, modular approach to surface functionalization that harnesses chain entanglement. A layer of functionalized polyisobutylene, (PIB)‐ω, where ω = ‐OH, ‐thymine (T), ‐hexaethylene glycol (HEG), poly(ethylene glycol) (‐PEG‐OH), methoxy‐functionalized poly(ethylene glycol) (‐PEG‐OCH3), and ‐tetraethylene glycol‐α‐lipoate (TEG‐αL) was adhered to PIB‐based thermoplastic elastomer (TPE) surfaces. X‐ray photoelectron spectroscopy (XPS) at angles ranging from 20° to 75° showed decreasing polar group concentration with increasing penetration depth, confirming segregation of polar groups toward the surface. Water contact angle (WCA) of the PIB‐based TPE dropped from 95° to 79°?83° upon coating, and soaking in water for 24 h further decreased the WCA. Dynamic WCA measurements showed 40–30° receding angles, showing that stimulus from an aqueous environment elicits enrichment of polar groups on the surface. Fibrinogen (Fg) adsorption on the various surfaces was quantified using surface plasmon resonance (SPR). Static and dynamic WCA did not vary significantly among TPE + PIB‐ω surfaces, but there were dramatic differences in Fg adsorption: 256 ng/cm2 was measured on the native TPE, which dropped to 40 and 22 ng/cm2 on PIB‐PEG‐OCH3 and PIB‐PEG‐OH‐coated surfaces. PIB‐TEG‐αL‐coated surfaces presented the lowest Fg adsorption with 14 ng/cm2. © 2017 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2017 , 55 , 1742–1749  相似文献   

14.
Thiol‐terminated polyisobutylene (α,ω‐PIB‐SH) was synthesized from thiourea and α,ω‐bromine‐terminated PIB in a three‐step, one‐pot procedure, using a cosolvent system of 1:1 (v:v) heptane:dimethylformamide. The initial alkylisothiouronium salt was produced at 90 °C. Aqueous base hydrolysis at 110 °C resulted in thiolate chain ends, which were re‐acidified to form telechelic PIB‐SH. 1H and 13C NMR confirmed thiol functionality and complete terminal halogen conversion. Thiol‐based “click” reactions were used to demonstrate PIB‐SH utility. Alkyne‐terminated PIB was synthesized by a phosphine‐catalyzed thiol‐ene Michael addition with propargyl acrylate. Reaction of this product with 6‐mercaptohexanol produced tetrahydroxy‐functional PIB by a sequential thiol‐ene/thiol‐yne procedure. 1H NMR confirmed the structures of both products. PIB‐SH was reacted with isocyanates in the presence of base to produce polythiourethanes. A model reaction used phenyl isocyanate in THF with catalytic triethylamine. Similar conditions were used to produce PIB‐based thiourethanes with and without a small‐molecule chain extender. Increased molecular weights and thiol group conversion were observed with GPC and 1H NMR, respectively. © 2010 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2010  相似文献   

15.
A new two‐step synthesis of polyisobutylene (PIB) with precisely one thymine functionality per chain (PIB‐T) is reported. The primary hydroxyl‐functionalized PIB (PIB‐OH) precursor was prepared by direct functionalization via living carbocationic polymerization of isobutylene initiated by the α‐methylstyrene epoxide/TiCl4 system. Matrix assisted laser desorption/ionization time‐of‐flight mass spectrometry (MALDI‐ToF MS) of a low molecular weight PIB‐OH precursor demonstrated the effectiveness of direct functionalization by this method. A PIB‐acrylate precursor (PIB‐Ac) was obtained from such a PIB‐OH, and the PIB‐T was subsequently prepared by Michael addition of thymine across the acrylate double bond. MALDI‐ToF MS of the products verified that all polymer chains carried precisely one thymine group. © 2010 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 48: 3501–3506, 2010  相似文献   

16.
In this paper we present a poly siloxane containing covalently bound indoaniline dye, which decolorizes during reaction with a poly siloxane bearing vinyl and Si‐H groups in the presence of a Karstedt catalyst. Poly siloxane bearing indoaniline endgroups were prepared from (2‐allyl‐4‐(4‐(ethyl(2‐hydroxyethyl)amino)phenylimino)‐ 6‐methoxycyclohexa‐2,5‐dienone respectively 2‐allyl‐4‐(4‐(ethyl(2‐hydroxyethyl)amino)phenylimino)cyclohexa‐2,5‐ dienone) and Si‐H terminated poly siloxane. The structure was verified by IR‐, 1H‐NMR spectroscopy, and MALDI‐TOF mass spectrometry. The obtained blue colored poly siloxane is suitable as dye indicator for crosslinking, for example, for a time‐controlled preparation of dental impressions. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

17.
A 1H NMR and rheological study of host‐guest complexation interactions between three β‐cyclodextrin and three adamantyl substituted poly(acrylate)s, and also between them and adamantan‐1‐carboxylate and native β‐cyclodextrin, respectively, is reported. A close correllation between molecular level interactions and macroscopic characteristics of polymer networks in aqueous solution exists. It is found that intra‐ and intermolecular host‐guest complexation between the host β‐cyclodextrin and guest adamantyl substituents and the length of the aliphatic tether between them and the poly(acrylate) backbone have important roles. Dominantly, steric effects and competitive intra‐ and intermolecular host‐guest complexation are found to control poly(acrylate) isomeric interstrand linkage in polymer network formation. The preparations of five new 3% randomly substituted poly(acrylate)s are reported. © 2010 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 48: 1818–1825, 2010  相似文献   

18.
The poly(ethylene glycol)/poly(2‐(N,N‐dimethylamino)ethyl methacrylate) (PEG/PDMAEMA) double hydrophilic block copolymers were synthesized by atom transfer radical polymerization using mPEG‐Br or Br‐PEG‐Br as macroinitiators. The narrow molecular weight distribution of PEG/PDMAEMA block copolymers was identified by gel permeation chromatography results. The thermosensitivity of PEG/PDMAEMA block copolymers in aqueous solution was revealed to depend significantly on pH, ionic strength, chain structure, and concentration of the block copolymers. By optimizing these factors, the cloud point temperature of PEG/PDMAEMA block copolymers can be limited within body temperature range (30–37 °C), which suggests that PEG/PDMAEMA block copolymers could be a good candidate for drug delivery systems. © 2010 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 48: 503–508, 2010  相似文献   

19.
A novel aromatic acetal‐based acid‐labile monomer 2‐phenyl‐5‐ethyl‐5‐acryloxymethyl‐1,3‐dioxacyclohexane (HEDPA) was synthesized and polymerized by reversible addition fragmentation chain transfer (RAFT) polymerization using alkynyl functional chain transfer agent (CTA‐Alk). Afterward, a series of amphiphilic diblock copolymers composed of fixed hydrophobic poly(2‐phenyl‐5‐ethyl‐5‐acryloxymethyl‐1,3‐dioxacyclohexane) (PDAEP) segments and various lengths of hydrophilic mPEG segments were prepared through click reaction between alkynyl‐terminated PDAEP and azido‐terminated mPEG. The self‐assembly behaviors of the diblock copolymers were investigated by dynamic light scattering (DLS), transmission electron microscopy (TEM), fluorescence spectroscopy, and 1H NMR. These results indicated that the diblock copolymers could self‐assemble into nano‐sized micelles with PDAEP cores and PEG coronas in aqueous solution. DLS, fluorescence spectroscopy and UV–vis spectroscopy were used to monitor the pH‐triggered assembly/disassembly transition of the micelles. These results showed that the assembly/disassembly transition behaviors of the diblock copolymers micelles can be adjusted by changing the lengths of the mPEG segments. © 2015 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2016 , 54, 1537–1547  相似文献   

20.
Copper‐catalyzed azide‐alkyne cycloaddition (CuAAC) was used to prepare glycosylated polyethylene (PE)–poly(ethylene glycol) (PEG) amphiphilic block copolymers. The synthetic approach involves preparation of alkyne‐terminated PE‐b‐PEG followed by CuAAC reaction with different azide functionalized sugars. The alkyne‐terminated PE‐b‐PEG was prepared by etherification reaction between hydroxyl‐terminated PE‐b‐PEG (Mn ~ 875 g mol?1) and propargyl bromide and azidoethyl glycosides were prepared by glycosylation of 2‐azidoethanol. Atmospheric pressure solids analysis probe‐mass spectrometry was used as a novel solid state characterization tool to determine the outcome of the CuAAC click reaction and end‐capping of PE‐b‐PEG by the azidoethyl glycoside group. The aqueous solution self‐assembly behavior of these amphiphilic glycosylated polymers was explored by TEM and dye solubilization studies. Carbohydrate‐bearing spherical aggregates with the ability to solubilize a hydrophobic dye were observed. The potential of these amphiphilic glycosylated polymers to self‐assemble via electro‐formation into giant carbohydrate‐bearing polymersomes was also investigated using confocal fluorescence microscopy. An initial bioactivity study of the carbohydrate‐bearing aggregates is furthermore presented. © 2013 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2013 , 51, 5184–5193  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号