首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 171 毫秒
1.
The hydridic reactivity of the complex W(CO)(H)(NO)(PMe3)3 (1) was investigated applying a variety of protic donors. Formation of organyloxide complexes W(CO)(NO)(PMe3)3(OR) (R = C6H5 (2), 3,4,5-Me3C6H2 (3), CF3CH2 (4), C6H5CH2 (5), Me (6) and iPr (7)) and H2 evolution was observed. The reactions of 1 accelerated with increasing acidity of the protic donor: Me2CHOH (pKa = 17) < MeOH (pKa = 15.5) < C6H5CH2OH (pKa = 15) < CF3CH2OH (pKa = 12.4) < C6H2Me3OH (pKa = 10.6) < C6H5OH (pKa = 10).Regioselective hydrogen bonding of 1 was probed with two of the protic donors furnishing equilibrium formation of the dihydrogen bonded complexes ROH···HW(CO)(NO)(PMe3)3 (R = 3,4,5-Me3C6H2,3a and iPr, 7a) and the ONO hydrogen bonded species ROH···ONW(CO)(H)(PMe3)3 (R = C6H2Me3,3b and iPr, 7b) which were studied in hexane and d8-toluene solutions using variable temperature IR and NMR spectroscopy. Quantitative IR experiments at low temperatures using 3,4,5-trimethylphenol (TMP) confirmed the two types of competitive equilibria: dihydrogen bonding to give 3aH1 = −5.8 ± 0.4 kcal/mol and ΔS1 = −15.3 ± 1.4 e.u.) and hydrogen bonding to give 3b (ΔH2 = −2.8 ± 0.1 kcal/mol and ΔS2 = −5.8 ± 0.3 e.u.). Additional data for the hydrogen bonded complexes 3a,b and 7a,b were determined via NMR titrations in d8-toluene from the equilibrium constants Kδ) and KR1) measuring either changes in the chemical shifts of HW(Δδ) or the excess relaxation rates of HWR1) (3a,b: ΔHδ) = −0.8 ± 0.1 kcal/mol; ΔSδ) = −1.4 ± 0.3 e.u. and ΔHR1) = −5.8 ± 0.4 kcal/mol; ΔSR1) = −22.9 ± 1.9 e.u) (7a,b: ΔHδ) = −2.3 ± 0.2 kcal/mol; ΔSδ) = −11.7 ± 0.9 e.u. and ΔHR1) = −2.9 ± 0.2 kcal/mol; ΔSR1) = −14.6 ± 1.0 e.u). Dihydrogen bonding distances of 1.9 Å and 2.1 Å were derived for 3a and 7a from the NMR excess relaxation rate measurements of HW in d8-toluene. An X-ray diffraction study was carried out on compound 2.  相似文献   

2.
Treatment of the η1-acetylide complex [(η5-C5H5)(CO)(NO)W---CC---C(CH3)3]Li (4) with 1,2-diiodoethane in THF at −78 °C, followed by the addition of Li---CC---R [R=C(CH3)3, C6H5, Si(CH3)3, 6a6c] or n-C4H9Li and protonation with H2O, afforded the corresponding oxametallacyclopentadienyl complexes (η5-C5H5)W(I)(NO)[η2-O=C(CC---R)CH=CC(CH3)3] (7a7c), 8c and (η5-C5H5)W(I)(NO)[η2-O=C(n-C4H9)CH=CC(CH3)3] (9). The formation of these metallafuran derivatives is rationalized by the electrophilic attack of 1,2-diiodoethane onto the metal center of 4 to form first the neutral complex [(η5-C5H5)(I)(CO)(NO)W---CC---C(CH3)3] (5). Subsequent nucleophilic addition of Li---CC---R 6a6c or n-C4H9Li and a reductive elimination step followed by protonation leads to the products 7a7c and 9. One reaction intermediate could be trapped with CF3SO3CH3 and characterized by a crystal structure analysis. The identity of another intermediate was established by infrared spectroscopic data. The oxametallacyclopentadienyl complex 10 forms in the presence of excess 1,2-diiodoethane through an alternative pathway and crystallizes as a clathrate containing iodine.  相似文献   

3.
Reactions of the dichloroboryl complex of osmium, Os(BCl2)Cl(CO)(PPh3)2, with water, alcohols, and amines: Crystal structures of Os[B(OH)2]Cl(CO)(PPh3)2, Os[B(OEt)2]Cl(CO)(PPh3)2, and

Reaction between the dichloroboryl complex, Os(BCl2)Cl(CO)(PPh3)2, and water replaces both chloride substituents on the boryl ligand, without cleavage of the Os---B bond, giving yellow Os[B(OH)2]Cl(CO)(PPh3)2 (1). Compound 1 can be regarded as an example of a ‘metalla–boronic acid’ (LnM---B(OH)2) and in the solid state, X-ray crystal structure determination reveals that molecules of 1 are tetragonal pyramidal in geometry (Os---B, 2.056(3) Å) and are arranged in pairs, as hydrogen-bonded dimers. This same arrangement is found in the crystalline state for simple boronic acids. Reaction between the dichloroboryl complex, Os(BCl2)Cl(CO)(PPh3)2, and methanol and ethanol produces yellow Os[B(OMe)2]Cl(CO)(PPh3)2 (2a) and yellow Os[B(OEt)2]Cl(CO)(PPh3)2 (2b), respectively. The crystal structure of 2b reveals a tetragonal pyramidal geometry with the diethoxyboryl ligand in the apical site and with an Os---B bond distance of 2.081(5) Å. Reaction between Os(BCl2)Cl(CO)(PPh3)2, and N,N′-dimethyl-o-phenylenediamine and N,N′-dimethyl-ethylenediamine produces yellow

(5) and yellow

(6), respectively. Compounds 1, 2a, 2b, 5, and 6 all react with carbon monoxide to give the colourless, six-coordinate complexes Os[B(OH)2]Cl(CO)2(PPh3)2 (3), Os[B(OMe)2]Cl(CO)2(PPh3)2 (4a), Os[B(OEt)2]Cl(CO)2(PPh3)2 (4b),

(7), and

(8), respectively, but in the case of 6 only, this CO uptake is easily reversible. The crystal structure of 5 is also reported.  相似文献   

4.
The nature of the protonation reaction of (
o(CO)3 (M = Mo, W; R = Me, Ph, p-MeC6H4) (2) (obtained from (CO)3CpMCH2CCR (1) and Co2(CO)8) to give (CO)3 Cp(CO)2 (3) was further investigated by a crossover experiment. Thus, reaction of an equimolar mixture of 2b (M = W, Cp = η5-C5H5, R = Ph) and 2e (M = W, Cp = η5-C5H4Me; R = p-MeC6H4) with CF3COOH affords only 3b (same M, Cp, and R as 2b) and 3e (same M, Cp, and R as 2e) to show an intramolecular nature of this transformation. Reaction of (CO)3CpWCH2CCPh (1b) with Co4(CO)12 was also examined and found to yield 2b exclusively. Treatment of 1 with Cp2Mo2(CO)4 at 0–5°C provides thermally sensitive compounds, possibly (CO)2Cp
oCp(CO)2 (5), which decompose at room temperature to give Cp2Mo2(CO)6 as the only isolated product.  相似文献   

5.
Carbonyl–iridium half-sandwich compounds, Cp*Ir(CO)(EPh)2 (E=S, Se), were prepared by the photo-induced reaction of Cp*Ir(CO)2 with the diphenyl dichalcogenides, E2Ph2, and used as neutral chelating ligands in carbonylmetal complexes such as Cp*Ir(CO)(μ-EPh)2[Cr(CO)4], Cp*Ir(CO)(μ-EPh)2[Mo(CO)4] and Cp*Ir(CO)(μ-EPh)2[Fe(CO)3], respectively. A trimethylphosphane–iridium analogue, Cp*Ir(PMe3)(μ-SeMe)2[Cr(CO)4], was also obtained. The new heterodimetallic complexes were characterized by IR and NMR spectroscopy, and the molecular geometry of Cp*Ir(CO)(μ-SePh)2[Mo(CO)4] has been determined by a single crystal X-ray structure analysis. According to the long Ir…Mo distance (395.3(1) Å), direct metal–metal interactions appear to be absent.  相似文献   

6.
The reaction of the mixed-metal carbonyl cluster anion [H2Ru3Ir(CO)12] with PPh3, PMe3, P(OPh)3, AsPh3 or SbPh3 leads to the mono-substituted derivatives [H2Ru3Ir(CO)11L] (L=PPh3 1, L=PMe3 2, L=P(OPh)3 3, L=AsPh3 4, L=SbPh3 5). Protonation of the anions 15 gives the neutral trihydrido derivatives H3Ru3Ir(CO)11L (L=PPh3 6, L=PMe3 7, L=P(OPh)3 8, L=AsPh3 9, L=SbPh3 10). All new tetranuclear clusters invariably show a tetrahedral arrangement of the Ru3Ir skeleton, as predicted for 60 e systems. The ligand L is coordinated to one of the ruthenium atoms, except in the case of L=PMe3 where two substitution isomers are observed. While the anionic isomers [H2Ru3Ir(CO)11(PMe3)] (2) could not be separated, the corresponding neutral isomers H3Ru3Ir(CO)11(PMe3) (7) could be resolved by thin-layer chromatography. In isomer 7a, the phosphine ligand is coordinated to one of the ruthenium atoms, whereas in isomer 7b the PMe3 ligand is bonded to the iridium atom. The molecular structures of 17b8 and 9 were confirmed by a single-crystal X-ray structure analysis.  相似文献   

7.
《Polyhedron》2000,19(28)
The reactions of ReO(OEt)Cl2L2, L=py, PPh3 or ReOCl3(Me2S)(OPPh3), with spirohydrophosphorane HP(OCMe2CMe2O)2 – abbreviated here as HPO – in toluene yield ReOCl2(PO)L complexes, L=py (1), PPh3 (2) and OPPh3 (3), respectively. The encountered bidentate phosphite pinacolato (OCMe2CMe2O)POCMe2CMe2O ligand (PO) is afforded by means of a spirophosphorane ring-opening reaction. All the pink–violet compounds 13 were characterised by NMR, IR and UV–Vis spectroscopies. The structure of trans-ReOCl2(PO)PPh3 (2) was determined crystallographically. The rhenium atom adopts distorted octahedral geometry with a trans multiply bonded terminal oxo ligand (Re–Ot=1.698(2) Å) trans to pinacolate oxygen (Re–O=1.880(2) Å). Two phosphorus atoms as well as two chlorides are mutually in a trans arrangement.  相似文献   

8.
Heterometallic triangular platinum–cobalt, palladium–cobalt and palladium–molybdenum clusters stabilized by one or two bridging diphosphine ligands such as Ph2PNHPPh2 (dppa) or (Ph2P)2NMe (dppaMe) or by mixed ligand sets Ph2PCH2PPh2 (dppm)/dppa have been prepared with the objectives of comparing the stability and properties of the clusters as a function of the short-bite diphosphine ligand used and of the metal carbonyl fragment they contain. Ligand redistribution reactions were observed during the purification of [Co2Pd(μ3-CO)(CO)4(μ-dppa)(μ-dppm)] (4) by column chromatography with the formation of [Co2Pd(μ3-CO)(CO)4(μ-dppm)2] and the dinuclear complex [(OC)2 Cl] (5). The latter was independently prepared by reaction of [Pd(dppa-P,P′)2](BF4)2 with Na[Co(CO)4]. Attempts to directly incorporate the ligand (Ph2P)2N(CH2)3Si(OMe)3 (dppaSi) into a cluster or to generate it by N-functionalization of coordinated dppa were unsuccessful, in contrast to results obtained recently with related clusters. The crystal structure of [Co2Pt(μ3-CO)(CO)6(μ-dppa)] (1) has been determined by X-ray diffraction.  相似文献   

9.
Reaction of the Et3NH+ salts of the [(μ-RS)(μ-CO)Fe2(CO)6] anions (R=But, Ph or PhCH2) with (μ-S2)Fe2(CO)6 gives reactive intermediates [(μ-RS)(μ-S){Fe2(CO)6}24-S)]. Reactions of the latter with alkyl halides, acid chlorides and Cp(CO)2FeI have been studied. X-Ray structure of (μ-ButS)(μ-PhCH2S)[Fe2(CO)6]24-S) was determined.  相似文献   

10.
The reaction of M3(CO)12 (M = Ru, Fe) with excess bi-2,7-cyclooctadienyl (C16H22) 1 gave a mononuclear complex M(CO)3(1,2,1′-2′-η4-C16H22), 2a (M = Ru) or 3a (M = Fe), in good yield. Treatment of 2a with Fe3(CO)12 or reaction of 3a with Ru3(CO)12 gave the heterobimetallic complex RuFe(CO)6(C10H22) consisting of a ruthenacyclopentadiene unit coordinated to an Fe(CO)3 fragment, as confirmed by 1H NMR and X-ray studies. The corresponding homobimetallic complex Ru2(CO)6(C16H22) was obtained from the 1:1 reaction of 2a with Ru3(CO)12, while the direct reaction of 1 with Ru3(CO)12 gave Ru2(CO)6(C16H20) preferentially with a loss of two hydrogen atoms. The pathway for formation of these bimetallic complexes was interpreted as a dehydrogenative metallacyclization followed by hydrogen transfer.  相似文献   

11.
Lewis-base mediated fragmentation of polymeric nickel(II) fumarate and oxalate are attempted using chelating σ-donor diamines like ethylenediamine (en) and 1,3-diaminopropane (dap) in various conditions which yielded [Ni(en)3](fum)·3H2O (1), [Ni(en)3](ox) (2), [Ni(dap)2(fum)] (3) and [Ni(dap)(ox)]·2H2O (4). While 1 and 2 are molecular products each containing octahedral [Ni(en)3]2+ moieties and the anionic dicarboxylate species, 3 and 4 are dap-incorporated polymeric products. The fumarate derivative 1 containing [Ni(en)3]2+ moieties crystallizes in the monoclinic space group C2/c with a = 17.899(4) Å, b = 11.747(2) Å, c = 10.748(2) Å, β = 125.59(3)°, V = 1837.7(6) Å3, Z = 4, while the oxalate analogue 2 is seen to be in the trigonal space group P−31c with a = 8.8770(13) Å, b = 8.8770(13) Å, c = 10.482(2) Å, γ = 120°, V = 715.3(2) Å3, Z = 2. The octahedral [Ni(en)3] units in both 1 and 2 are seen to be strongly H-bonded to the dicarboxylate moieties through the coordinated en units leading to a three-dimensional network. However, in 1 the water molecules also take part in the H-bonding and contribute to the overall 3D structure. In both 1 and 2 the crystal packing is done with the [Ni(en)3]2+ units with absolute configuration Λ(δδδ) and its mirror conformer with Δ configuration in exactly equal numbers. Spectral (IR and UV–Visible) and magnetic measurements were carried out and some of the ligand-field parameters like Dq, B and β were evaluated for all the four compounds. These values suggest the presence of octahedrally coordinated nickel(II) in all the four complexes. Spectral data suggest that 3 has the two chelating dap moieties and the fumarate coordinated in η1 form through both its carboxylate moieties while 4 has one chelating dap and the oxalate moiety coordinated in η4-bis-chelating form. Though both 1 and 2 are made of the same type of [Ni(en)3]2+ units their thermograms give entirely different thermal features; 1 showing three clearly successive and step-wise dissociation of each en unit while 2 having a combined loss of two en units in the first thermal step. The relevant thermodynamic and kinetic parameters like Ea and ΔS also could be evaluated for various thermal steps for the compounds 14 using Coats–Redfern equation.  相似文献   

12.
The interaction of molecular hydrogen with [Rh(PPh3)3]+ (1a) “immobilized” in the interlamellar spaces of montmorillonite resulted in the formation of a monohydrido complex, [RhIIH(PPh3)3] (2a), characterized by electrochemical data of the clay-loaded electrode, IR, EPR and hydrogen absorption studies. Heterogenized homogeneous catalytic hydrogenation of cyclohexene catalysed by 1a was investigated in the temperature range 283–313 K. The order of reaction with respect to cyclohexene and hydrogen concentration is fractional and first order with respect to catalyst concentration. Thermodynamic parameters ΔH0 and ΔS0 corresponding to the formation of the monohydrido species were found to be 18 kcal mol−1 and 61 e.u., respectively. The activation enthalpy, ΔH, and entropy, ΔS, for the hydrogenation of cyclohexene by the RhII—H complex in clay are more negative by about 2 kcal mol−1 and 7 e.u. compared to Wilkinson's catalyst, RhCl(PPh3)3 (1), in homogeneous solution.  相似文献   

13.
Reaction of [MX(CO)2(η7-C7H7)] (M=Mo, X=Br; M=W, X=I) with two equivalents of CNBut in toluene affords the trihapto-bonded cycloheptatrienyl complexes [MX(CO)2(CNBut)2(η3-C7H7)] (1, M=Mo, X=Br; 2, M=W, X=I). The X-ray crystal structure of 2 reveals a pseudo-octahedral molecular geometry with an asymmetric ligand arrangement at tungsten in which one CNBut is located trans to the η3-C7H7 ring. Treatment of 2 with tetracyanoethene results in 1,4-cycloaddition at the η3-C7H7 ring to give [WI(CO)2(CNBut)2{η3-C9H7(CN)4}], 3. The principal reaction type of the molybdenum complex 1 is loss of carbonyl and bromide ligands to afford substituted products [MoBr(CNBut)2(η7-C7H7)] 4 or [Mo(CO)(CNBut)2(η7-C7H7)]Br. Reaction of [MoBr(CO)2(η7-C7H7)] with one equivalent of CNBut in toluene at 60°C affords [MoBr(CO)(CNBut)(η7-C7H7)], 5, which is a precursor to [Mo(CO)(CNBut)(NCMe)(η7-C7H7)][BF4], 6, by reaction with Ag[BF4] in acetonitrile. In contrast with the parent dicarbonyl systems [MoX(CO)2(η7-C7H7)], complexes of the Mo(CO)(CNBut)(η7-C7H7) auxiliary, 5 and 6, do not afford observable η3-C7H7 products by ligand addition at the molybdenum centre.  相似文献   

14.
The reaction of C5H5Rh(CO)(PiPr3) (1] which is prepared from C5H5Rh(CO)2 and neat P1Pr3, with the nitriloxides 2-RC6H4CNO (R = H, Cl) leads to the formation of the metallaheterocycles C5H5(P1Pr3) ) (2, 3) in 90–95% yield. Compound 1 reacts with tosylazide to give the C,N-bound isocyanate complex C5 H5(PiPr3)Rh(η2-TosN=C=O) (6). Analogously, on treatment of C5Me5Co(CO)(PMe3) with phenylazide the phenylisocyanate derivative C5Me5(PMe3)Co(η2-PhN=C=O) (7) is formed. Protonation of 7 with CF3CO 2H affords the non-ionic carbamoylcobalt complex C5Me5(PMe3)Co[C(O)NHPh](O2CCF3) (8). The X-ray structural analysis of 2 reveals the presence of an almost planar heterocycle in which the two Rh-C distances differ by 0.045 Å  相似文献   

15.
Triosmium clusters of the type [Os3(CO)10(μ-H)(NHCOR)] (1; R = H, Me, Ph, Et or Pr) are formed in high yields form the reaction of [Os3(CO)10(NCMe)2] (2) with amides. The nature of the products formed from thermolysis of 1 depend on the group, R.  相似文献   

16.
Mamata Singh  R.J. Butcher  N.K. Singh   《Polyhedron》2008,27(14):3151-3159
Two novel mononuclear mixed-ligand complexes [Ni(en)2(3-pyt)2] (1) and [Cu(en)2](3-pyt)2 (2), derived from potassium [N′-(pyridine-3-carbonyl)-hydrazinecarbodithioate [K+(H2L)] and containing en as a co-ligand, have been synthesized. The [K+(H2L)] undergoes cyclization in the presence of ethylenediamine (en) and is converted to 5-(3-pyridyl)-1,3,4-oxadiazole-2-thione (3-pyt). [Ni(en)2(3-pyt)2] and [Cu(en)2](3-pyt)2 have been characterized with the aid of elemental analyses, IR, UV–Vis, magnetic susceptibility and single crystal X-ray studies. The complexes 1 and 2 crystallize in the orthorhombic and monoclinic systems with space groups Pca2(1) and C2/c, respectively. The single crystal X-ray diffraction studies of both complexes indicate that (3-pyt) adopts a thione form in 1 but is present as a thiolato form in 2.  相似文献   

17.
The reaction of [Fe(μ-I)(NO)2]2 and TMEDA in a 1:2 molar ratio in THF affords the neutral five-coordinate DNIC [(TMEDA)Fe(NO)2I] (1). The single-crystal X-ray structure shows that the geometry of iron center of complex 1 is best described as a distorted trigonal bipyramidal with two nitrosyl groups positioned in the equatorial plane. The EPR spectrum of complex 1 displays the six-line signal with g = 2.031 (aI = 37.6 G) at 298 K. The coincident g values of EPR among complex 1, protein-bound DNICs and low-molecular-weight DNICs implicate that the five-coordinate DNICs may exist in biological system. The interconversion between complex 1 and [(TMEDA)Fe(NO)2] (2) reveals that the {Fe(NO)2}9 DNICs containing [amine, amine] ligation mode could be stabilized by the five-coordinated geometry while the {Fe(NO)2}10 DNICs containing [amine, amine] ligation mode favors the four coordination sphere. In addition, the transformation from complex 1 to [Fe(NO)2(C3H3N2)]4 (3), [Fe(μ-SPh)(NO)2]2 (4), [PPh4][(PhS)2Fe(NO)2] (5) and [Na-18-crown-6-ether][(C3H3N2)2Fe(NO)2] (6), respectively, in the presence of thiolates or imidazolates indicates that complex 1 could be employed as the precursor for the syntheses of the DNICs containing the [N,N]/[N,S]/[S,S] different ligations.  相似文献   

18.
In this study selected bidentate (L2) and tridentate (L3) ligands were coordinated to the Re(I) or Tc(I) core [M(CO)2(NO)]2+ resulting in complexes of the general formula fac-[MX(L2)(CO)2(NO)] and fac-[M(L3)(CO)2(NO)] (M = Re or Tc; X = Br or Cl). The complexes were obtained directly from the reaction of [M(CO)2(NO)]2+ with the ligand or indirectly by first reacting the ligand with [M(CO)3]+ and subsequent nitrosylation with [NO][BF4] or [NO][HSO4]. Most of the reactions were performed with cold rhenium on a macroscopic level before the conditions were adapted to the n.c.a. level with technetium (99mTc). Chloride, bromide and nitrate were used as monodentate ligands, picolinic acid (PIC) as a bidentate ligand and histidine (HIS), iminodiacetic acid (IDA) and nitrilotriacetic acid (NTA) as tridentate ligands. We synthesised and describe the dinuclear complex [ReCl(μ-Cl)(CO)2(NO)]2 and the mononuclear complexes [NEt4][ReCl3(CO)2(NO)], [NEt4][ReBr3(CO)2(NO)], [ReBr(PIC)(CO)2(NO)], [NMe4][Re(NO3)3(CO)2(NO)], [Re(HIS)(CO)2(NO)][BF4], [99Tc(HIS)(CO)2(NO)][BF4], [99mTc(IDA)(CO)2 (NO)] and [99mTc(NTA)(CO)2(NO)]. The chemical and physical characteristics of the Re and Tc-dicarbonyl-nitrosyl complexes differ significantly from those of the corresponding tricarbonyl compounds.  相似文献   

19.
The iridium(I) complex [Ir(CO2Me)(CO)2(PPh3)2] undergoes a transesterification reaction with the alcohols CH2C(R)CH2OH (R = H, Me), MeCCCH2CH2OH, and HOCH2CH2OH to afford the complexes
[Ir(CO2CH2CH2CMe)(CO)2(PPh3)2] and [Ir(CO2CH2CH2OH)(CO)2(PPh3)2], respectively. In contrast the acetylenic alcohol HCCCH2CH2OH gives [Ir(CCCH2CH2OH)(CO)PPh3)2]. Some reactions of the new complexes are described.  相似文献   

20.
Detailed procedures for the syntheses of Os(CO)2(PPh3)3, Os(CO)(CNR)-(PPh3)3 (R = p-tolyl), Os(CO)(CS)(PPh3)3 and Os(CS)(CNR)(PPh3)3, together with the derived complexes Os(CO)2(CS)(PPh3)2, Os(CO)(CS)(CNR)(PPh3)2, Os(η2-C2H4)(CO)(CNR)(PPh3)2, Os(η2-C2H4)(CO)(CS)(PPh3)2, Os(η2CS2)(CO)2-(PPh3)2, Os(η2CS2)(CO)(CS)(PPh3)2, Os(η2-CS2)(CO)(CNR)(PPh3)2, Os(η2PhC2Ph)(CO)2(PPh3)2 and OsH(C2Ph)(CO)2(PPh3)2 are described.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号