首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 687 毫秒
1.
Reactions between [Ru(thf)(PPh3)2(η-C5H5)]+ and lithium acetylides have given further examples of substituted ethynylruthenium complexes that are useful precursors of allenylidene and cumulenylidene derivatives. From Li2C4, mono- and bi-nuclear ruthenium complexes were obtained: single-crystal X-ray studies have characterised two rotamers of {Ru(PPh3)2(η-C5H5)}2(μ-C4), which differ in the relative cis and trans orientations of the RuLn groups. Protonation of Ru(CCCCH)(PPh3)2(η-C5H5) afforded the butatrienylidene cation [Ru(C=C=C=CH2)(PPh3)2(η-C5H5)]+, which reacted readily with atmospheric moisture to give the acetylethynyl complex Ru{CCC(O)Me}(PPh3)2(η-C5H5), also fully characterised by an X-ray structural study.  相似文献   

2.
Reaction of [MX(CO)2(η7-C7H7)] (M=Mo, X=Br; M=W, X=I) with two equivalents of CNBut in toluene affords the trihapto-bonded cycloheptatrienyl complexes [MX(CO)2(CNBut)2(η3-C7H7)] (1, M=Mo, X=Br; 2, M=W, X=I). The X-ray crystal structure of 2 reveals a pseudo-octahedral molecular geometry with an asymmetric ligand arrangement at tungsten in which one CNBut is located trans to the η3-C7H7 ring. Treatment of 2 with tetracyanoethene results in 1,4-cycloaddition at the η3-C7H7 ring to give [WI(CO)2(CNBut)2{η3-C9H7(CN)4}], 3. The principal reaction type of the molybdenum complex 1 is loss of carbonyl and bromide ligands to afford substituted products [MoBr(CNBut)2(η7-C7H7)] 4 or [Mo(CO)(CNBut)2(η7-C7H7)]Br. Reaction of [MoBr(CO)2(η7-C7H7)] with one equivalent of CNBut in toluene at 60°C affords [MoBr(CO)(CNBut)(η7-C7H7)], 5, which is a precursor to [Mo(CO)(CNBut)(NCMe)(η7-C7H7)][BF4], 6, by reaction with Ag[BF4] in acetonitrile. In contrast with the parent dicarbonyl systems [MoX(CO)2(η7-C7H7)], complexes of the Mo(CO)(CNBut)(η7-C7H7) auxiliary, 5 and 6, do not afford observable η3-C7H7 products by ligand addition at the molybdenum centre.  相似文献   

3.
We report in this communication the synthesis and characterization of two Fe/Re heterodinuclear complexes 3n of formula (η5-C5Me5)Re(NO)(PPh3)(CC)n2-dppe)Fe(η5-C5Me5) (n = 3, 4) as well as the hexacarbonyl dicobalt adduct (4) of the hexatriynediyl complex 33. We show by cyclic voltammetry that the “electronic communication” between the organometallic endgroups and thereby the thermodynamic stability of the corresponding mixed-valent (MV) parent 3n+ is strongly influenced by bridge extension or by complexation of the [Co2(CO)6] fragment. In the case of the hexatriynediyl complex, the MV complex 33+ or 4 can be isolated by performing the chemical oxidation of 33 at low temperature. Spectroscopic studies of this compound and of other stable oxidized redox congeners should now help us to unravel how bridge extension modifies the electronic communication between the different redox-active endgroups in this family of unsymmetrically-substituted polyynediyl compounds.  相似文献   

4.
It is shown that electrode catalysis of substitution reactions can operate even for systems with rather slow chemical steps and, furthermore, for those which are electrochemically irreversible. A procedure is described for synthesis of Fe(CO)(PPh3)(η5-C5H5)COCH3 from Fe(CO)25-C5H5)CH3 and triphenylphosphine. A simplified mechanism for the catalytic chain, is given and discussed in terms of the structure of the reacting species.  相似文献   

5.
Treatment of [RuHCl(CS)(PPh3)3] with Hg(o-C6H4N=NC6H5)2 affords [RuCl(CS)(η2C,N-o-C6H4N=NC6H5)(PPh3)2] (1) in good yield, where the cyclometallated azobenzene ligand coordinates through an ortho-C and one azo-N to give a five-membered chelate ring. Reaction of 1 with AgNO3 followed by NaBr or NaI affords the chloride-exchanged products [RuX(CO)(η2C,N-o-C6H4N=NC6H5)(PPh3)2] (2, 3), whereas reaction of 1 with AgOC(O)Me or NaS2CNEt2·2H2O gives the halide mono-phosphine-substituted complexes [Ru(CS)(LL)(η2C,N-o-C6H4NNC6H5)(PPh3)] (4, 5). In the solid-state structures of 1 and 3 there are significant changes in the bond lengths for the cyclometallated azobenzene ligand are observed relative to free azobenzene. These are discussed, with the aid of spectroscopic and crystallographic data, in terms of a cis-push–pull effect.  相似文献   

6.
The Ni-methyl complex (η5-C5H5)Ni(CH3)(PPh3) (1) reacted with B(C6F5)3 to give an unstable contact ion-pair complex with a μ-methyl bridge between the Ni and B atoms. Formation of the B-CH3 bond was confirmed by the reaction of this complex with PPh3 to give [(η5-C5H5)Ni(PPh3)2][B(CH3)(C6F5)3] which was structurally characterized. Spontaneous decomposition of the contact ion-pair complex yielded (η5-C5H5)Ni(C6F5)(PPh3) which is very stable and does not show any reactions with norbornene with or without added B(C6F5)3. 19F NMR study showed that the polynorbornene obtained by the catalysis of 1/B(C6F5)3 system has the C6F5 end-group. A series of reactions, which includes CH3/C6F5 exchange between the Ni and B centers with concomitant dissociation of PPh3 to accept coordination of a norbornene monomer, is proposed as the route to active species that can initiate vinyl polymerization of norbornene.  相似文献   

7.
Lithiation of O-functionalized alkyl phenyl sulfides PhSCH2CH2CH2OR (R = Me, 1a; i-Pr, 1b; t-Bu, 1c; CPh3, 1d) with n-BuLi/tmeda in n-pentane resulted in the formation of α- and ortho-lithiated compounds [Li{CH(SPh)CH2CH2OR}(tmeda)] (α-2ad) and [Li{o-C6H4SCH2CH2CH2OR)(tmeda)] (o-2ad), respectively, which has been proved by subsequent reaction with n-Bu3SnCl yielding the requisite stannylated γ-OR-functionalized propyl phenyl sulfides n-Bu3SnCH(SPh)CH2CH2OR (α-3ad) and n-Bu3Sn(o-C6H4SCH2CH2CH2OR) (o-3ad). The α/ortho ratios were found to be dependent on the sterical demand of the substituent R. Stannylated alkyl phenyl sulfides α-3ac were found to react with n-BuLi/tmeda and n-BuLi yielding the pure α-lithiated compounds α-2ac and [Li{CH(SPh)CH2CH2OR}] (α-4ab), respectively, as white to yellowish powders. Single-crystal X-ray diffraction analysis of [Li{CH(SPh)CH2CH2Ot-Bu}(tmeda)] (α-2c) exhibited a distorted tetrahedral coordination of lithium having a chelating tmeda ligand and a C,O coordinated organyl ligand. Thus, α-2c is a typical organolithium inner complex.Lithiation of O-functionalized alkyl phenyl sulfones PhSO2CH2CH2CH2OR (R = Me, 5a; i-Pr, 5b; CPh3, 5c) with n-BuLi resulted in the exclusive formation of the α-lithiated products Li[CH(SO2Ph)CH2CH2OR] (6ac) that were found to react with n-Bu3SnCl yielding the requisite α-stannylated compounds n-Bu3SnCH(SO2Ph)CH2CH2OR (7ac). The identities of all lithium and tin compounds have been unambiguously proved by NMR spectroscopy (1H, 13C, 119Sn).  相似文献   

8.
Chloride abstraction from [{M(η3 --- C3H5)Cl}n] (M = Pt, n = 4 or M = Pd, n = 2) by (NBu4)2[cis-Pt(C6F5)2(CCSiMe3)2] (1) gives rise to novel homo- and hetero-dinuclear zwitterionic derivatives (NBu4) [{cis-Pt(C6F5)2(CCSiMe3)2}M(η3-C3H5)] (M = Pt 2; M = Pd 3) which are formed by a M(η3-allyl)+ unit attached to both alkynyl ligands of the {cis-Pt(C6F5)2(CCSiMe3)2}2− fragment. The structure of 3 has been established by X-ray diffraction.  相似文献   

9.
The interaction of rhenium hydrides ReHX(CO)(NO)(PR3)2 1 (X=H, R=Me (a), Et (b), iPr (c); X=Cl, R=Me (d)) with a series of proton donors (indole, phenols, fluorinated alcohols, trifluoroacetic acid) was studied by variable temperature IR spectroscopy. The conditions governing the hydrogen bonding ReHHX in solution and in the solid state (IR, X-ray) were elucidated. Spectroscopic and thermodynamic characteristics (−ΔH=2.3–6.1 kcal mol−1) of these hydrogen bonded complexes were obtained. IR spectral evidence that hydrogen bonding with hydride atom precedes proton transfer and the dihydrogen complex formation was found. Hydrogen bonded complex of ReH2(CO)(NO)(PMe3)2 with indole (2a–indole) and organyloxy-complex ReH(OC6H4NO2)(CO)(NO)(PMe3)2 (5a) were characterized by single-crystal X-ray diffraction. A short NHHRe (1.79(5) Å) distance was found in the 2a–indole complex, where the indole molecule lies in the plane of the Re(NO)(CO) fragment (with dihedral angle between the planes 0.01°).  相似文献   

10.
The reactions of [Co(η-C5H5)(CO)(PR3)] or [Co(η-C5GH5)(CO)2]/R3P mixtures (R = alkyl or aryl) with CS2 in refluxing CS2 or CS2/toluene gives rise to [Co(η-C5H5)(PR3)(CS)], [Co(η-C5H5)(PR3)(CS2)], [Co(η-C5H5)(PR3)(CS3)], and [Co3(η-C5H5)3 (CS)(S)] in reasonable yields. The corresponding reactions using PhNCS give [Co(η-C5H5)(PPh3)(PhNCS)] and a polymeric species which appears to be [Co4(η-C5H5)4 (PhNCS)]. Similar products are obtained with [Co(η-C5H5)(CO)(CNR)] or [Co(η0C5H5)(CO)2]/RNC mixtures.  相似文献   

11.
The complex (η5-C5H4CH3)Mn(NO)(PPh3)I has been prepared by the reaction of NaI with [(η5-C5H4CH3)Mn(NO)(CO)(PPh3)]+ and also by the reaction of [(η5-C5H4CH3)Mn(NO)(CO)2]+ with NaI followed by PPh3. This iodide compound reacts with NaCN to yield (η5-C5H4CH3)Mn(NO)(PPh3)CN which is ethylated by [(C2H5)3O]BF4 to yield [(η5-C5H4CH3)Mn(NO)(PPh3)(CNC2H5)]+. Both [(η5-C5H4CH3)Mn(NO)(CO)2]+ and [(η5-C5H4CH3)Mn(NO)(PPh3)(CO)]+ react with NaCN to yield [(η5-C5H4CH3)Mn(NO)(CN)2]?. This anion reacts with Ph3SnCl to yield cis-(η5-C5H4CH3)Mn(NO)(CN)2SnPh3 and with [(C2-H5)3O]BF4 to yield [(η5-C5H4CH3)Mn(NO)(CNC2H5)2]+. The reaction of (η5-C5-H4CH3)Mn(NO)(PPh3)I with AgBF4 in acetonitrile yields [(η5-C5H4CH3)Mn-(NO)(PPh3)(NCCH3)]+. The complex (η5-C5H4CH3)Mn(NO)(CO)I, produced in the reaction of [(η5-C5H4CH3)Mn(NO)(CO)2]+ with NaI, is not stable and decomposes to the dimeric complex (η5-C5H4CH3)2Mn2(NO)3I for which a reasonable structure is proposed. Similar dimers can be prepared from the other halide salts. The reaction of (η7-C7H7)Mo(CO)(PPh3)I with NaCN yields (η7-C7-H7)Mo(CO)(PPh3)CN which is ethylated by [(C2H5)3O]BF4 to yield [(η7-C7H7)-Mo(CO)(PPh3)(CNC2H5)]+. The interaction of this molybdenum halide complex with AgBF4 in acetonitrile and pyridine yields [(η7-C7H7)Mo(CO)(PPh3)-(NCCH3)]+ and [(η7-C7H7)Mo(CO)(PPh3)(NC5H5)]+, respectively. Both (η5-C5-H4CH3)Mn(NO)(PPh3)I and (η7-C7H7)Mo(CO)(PPh3)I are oxidized by NOPF6 to the respective 17-electron cations in acetonitrile at ?78°C but revert to the neutral halide complex at room temperature. This result is supported by electrochemical data.  相似文献   

12.
Nitrile-functionalized NCN-pincer complexes of type [MBr(NC-4-C6H2(CH2NMe2)2-2,6)] (6a, M = Pd; 6b, M = Pt) (NCN = [C6H2(CH2NMe2)2-2,6]) are accessible by the reaction of Br-1-NC-4-C6H2(CH2NMe2)2-2,6 (2b) with [Pd2(dba)3 · CHCl3] (5a) (dba = dibenzylidene acetone) and [Pt(tol-4)2(SEt2)]2 (5b) (tol = tolyl), respectively. Complex 6b could successfully be converted to the linear coordination polymer {[Pt(NC-4-C6H2(CH2NMe2)2-2,6)](ClO4)}n (8) upon its reaction with the organometallic heterobimetallic π-tweezer compound {[Ti](μ-σ,π-CCSiMe3)2}AgOClO3 (7) ([Ti] = (η5-C5H4SiMe3)2Ti).The structures of 6a (M = Pd) and 6b (M = Pt) in the solid state are reported. In both complexes the d8-configurated transition metal ions palladium(II) and platinum(II) possess a somewhat distorted square-planar coordination sphere. Coordination number 4 at the group-10 metal atoms M is reached by the coordination of two ortho-substituents Me2NCH2, the NCN ipso-carbon atom and the bromide ligand. The NC group is para-positioned with respect to M.  相似文献   

13.
The reaction betweeen (η5-C5H5Mo(CO)3I and RNC is catalysed by [η5 -C5H5Mo(CO)3]2 and readily yields η5-C5H5Mo(CO)3−n(RNC)nI (n = 1–3). A free radical mechanism is consistent with experimental data.  相似文献   

14.
Tricarbonyl(fulvene)chromium complexes react with anionic nucleophiles to give functionally substituted cyclopentadienyl derivatives. The nucleophilic attack occurs at the exocyclic carbon atom of the fulvene ligand. Addition of PPh2 to (η6-6,6-dimethylfulvene)Cr(CO)3 (1) yields the novel anion [(η5-C5H4C(CH3)2PPh2)Cr-(CO)3], which can be isolated as a K+, (C2H5)4N+, (C6H5)4P+, or Tl+ derivative (2–5). The potassium salt of the uncoordinated C5H4C(CH3)2PPh2 anion (7) is obtained by treatment of 6,6-dimethylfulvene with KPPh2·2C4H8O2. Similarly, NaC5H5 reacts with 1 to give Na[(η5-C5H4C(CH3)2C5H5)Cr(CO)3] (8). The reactions of (6-dimethylaminofulvene)Cr(CO)3 (15) with nucleophiles are accompanied by elimination of dimethylamine. Addition of Ph3P=CH2 to 15 gives an unstable product, but after reaction of 6-dimethylaminofulvene with Ph3P=CH2, the free ligand C5H4=CHCH=PPh3 (17) can be isolated in moderate yields. Deeply colored anions of the type [(η55-C5H4C(R)=C5H4)Cr2(CO)6] (R = H, N(CH3)2) are synthesized by reaction of 15 or (6-dimethylamino-6-methylthiofulvene)Cr(CO)3 with NaC5H5 and subsequent complexation of the mononuclear intermediate with (CH3CN)3Cr(CO)3. In addition, the synthesis of the new fulvene complexes [C5H4=CH(CH=CH)2N(CH3)Ph]M(CO)3 (23, 24; M = Cr, Mo) is described. The investigation is extended to α-ferrocenylcarbenium ions, which are isoelectronic with (fulvene)Cr(CO)3 complexes. [(η5-C5H5)Fe(C5H4CPh2)]+ BF4 (25) adds tertiary phosphines at the exocyclic carbon atom to give phosphonium salts of the type [(η5-C5H5)Fe(C5H4CPh2PR3)]+BF4. A CO-substititution product of a tricarbonyl (fulvene)chromium complex is obtained for the first time by irradiation of (η6-6,6-diphenylfulvene)Cr(CO)3 in the presence of PPh3. In addition, an improved synthesis of the (CH3CN)3M(CO)3 complexes (M = Cr, Mo, W) is reported.  相似文献   

15.
Reaction of cis-[Mo(NCMe)2(CO)2(η5-L)][BF4] (L=C5H5 or C5Me5) with 1-acetoxybuta-1,3-diene gives the cationic complexes [Mo{η4-syn-s-cis-CH2CHCHCH(OAc)}(CO)2(η5-L)][BF4], which, on reaction with aqueous NaHCO3/CH2Cl2, afford good yields of the anti-aldehyde substituted complexes [Mo{η3-exo-anti-CH2CHCH(CHO)}(CO)2(η5-L)] 2 (L=C5Me5), 4 (L=C5H5)]. The corresponding η5-indenyl substituted complex 5 was prepared by protonation (HBF4·OEt2) of [Mo(η3-C3H5)(CO)2(η5-C9H7)] followed by addition of CH2=CHCH=CH(OAc) and hydrolysis (aq. NaHCO3/CH2Cl2). An X-ray crystallographic study of complex 2 confirmed the structure and showed that there is a contribution from a zwitterionic form involving donation of electron density from the molybdenum to the aldehyde carbonyl group. Treatment of 2 and 4, in methanol solution, with NaBH4 afforded the alcohols [Mo{η3-exo-anti-CH2CHCHCH2(OH)}(CO)2(η5-L)] [6 (L=C5H5), 8 (L=C5Me5)]; however, prolonged (30 h) reaction with NaBH4/MeOH surprisingly gave good yields of the methoxy-substituted complexes [Mo{η3-exo-anti-CH2CHCHCH2(OMe)}(CO)2(η5-L)] [7 (L=C5H5), 9 (L=C5Me5)], the structure of 7 being confirmed by single crystal X-ray crystallography. This methoxylation reaction can be explained by coordination of the hydroxyl group present in 6 and 8 onto B2H6 to form the potential leaving group HOBH3, which on ionisation affords [Mo(η4-exo-buta-1-3-diene)(CO)2(η5-L)]+ which is captured by reaction with OMe. Complex 8 is also formed in good yield on reaction of 2 with HBF4·OEt2 followed by treatment of the resulting cation [Mo{η4-exo-s-cis-syn-CH2CHCHCH(OH)}(CO)2(η5-C5Me5)][BF4] with Na[BH3CN]. Reaction of 4 with the Grignard reagents MeMgI, EtMgBr or PhMgCl afforded moderate yields of the alcohols [Mo{η3-exo-anti-CH2CHCHCH(OH)R}(CO)2(η5-C5H5)] [11 (R=Me), 12 (R=Et), 13 (R=Ph)]. Similarly, treatment of 2 with MeLi gave the corresponding alcohol 14. An attempt to carry out the Oppenauer oxidation [Al(OPr′)3/Me2CO] of 11 resulted in an elimination reaction and the formation of the η3-s-pentadienyl complex [Mo{η3-exo-anti-CH2CHCH(CHCH2)}(CO)2(η5-C5H5)], which was structurally identified by X-ray crystallography. Interestingly, oxidation of 6 with [Bu4nN][RuO4]/morpholine-N-oxide affords the aldehyde complex, 4 in good yield. Finally, reaction of 11 with [NO][BF4] followed by addition of Na2CO3 affords the fur-3-ene complex [Mo{η2-
(H)Me}(CO)(NO)(η5-C5H5)].  相似文献   

16.
The reaction of Mo(η3-C3H4(CH3))(CH3CN)2(CO)2Cl with AgBF4 in THF yields the cationic complex [Mo(η3-C3H4(CH3))(CH3CN)2(CO)2(THF)]+[BF4], 1, whose X-ray structure has been determined. Oxo nucleophiles are capable of replacing the weakly bound THF molecule in 1 and under simultaneous loss of CH3CN the resulting complexes aggregate to oligonuclear compounds. Accordingly, the reactions with NaOMe and KOH yield [Na(THF)4]+[(η3-C3H4(CH3))(CO)2Mo(μ-OCH3)3Mo(CO)23-C3H4(CH3))], 2 and [K(18-crown-6)]+[[Mo(η3-C3H4(CH3))(CO)2]32-OH)33-OH)], 3, which were characterized by means of single crystal X-ray diffraction. Due to fluoride abstraction from BF4 the reaction of 1 with KOH also yields fluorinated derivatives of 3 but incorporation of fluorine in 3 can be avoided if AgO3SCF3 rather than AgBF4 is used to generate the cation of 1. For purposes of comparison the dinuclear complex [K(18-crown-6)]+[[Mo(η3-C3H4(CH3))(CO)2]22-F)3], 4, has been prepared, too, showing fluoride bridges and KF bonding. The chemical properties and the structures of these compounds in solution as well as their role as structural models for intermediates during molybdenum oxide catalysed propene oxidation are discussed.  相似文献   

17.
The metallo-phosphaalkenes (η5-C5Me5)(CO)2FeP=C(R)(SiMe3) (Ia: R = SiMe3, Ib: R = Ph) and MeO2C---CC---CO2Me undergo a dipolar [3+2]-cycloaddition to afford the metallo-heterocycles [(η5-C5Me5)(CO)

=C(R)SiMe3] (IIIa,b) with exocyclic P=C double bonds.  相似文献   

18.
The reaction of [Fe(μ-I)(NO)2]2 and TMEDA in a 1:2 molar ratio in THF affords the neutral five-coordinate DNIC [(TMEDA)Fe(NO)2I] (1). The single-crystal X-ray structure shows that the geometry of iron center of complex 1 is best described as a distorted trigonal bipyramidal with two nitrosyl groups positioned in the equatorial plane. The EPR spectrum of complex 1 displays the six-line signal with g = 2.031 (aI = 37.6 G) at 298 K. The coincident g values of EPR among complex 1, protein-bound DNICs and low-molecular-weight DNICs implicate that the five-coordinate DNICs may exist in biological system. The interconversion between complex 1 and [(TMEDA)Fe(NO)2] (2) reveals that the {Fe(NO)2}9 DNICs containing [amine, amine] ligation mode could be stabilized by the five-coordinated geometry while the {Fe(NO)2}10 DNICs containing [amine, amine] ligation mode favors the four coordination sphere. In addition, the transformation from complex 1 to [Fe(NO)2(C3H3N2)]4 (3), [Fe(μ-SPh)(NO)2]2 (4), [PPh4][(PhS)2Fe(NO)2] (5) and [Na-18-crown-6-ether][(C3H3N2)2Fe(NO)2] (6), respectively, in the presence of thiolates or imidazolates indicates that complex 1 could be employed as the precursor for the syntheses of the DNICs containing the [N,N]/[N,S]/[S,S] different ligations.  相似文献   

19.
The intracomplex conversion of (2-diphenylphosphanoethyl)cyclopentadienyl zirconium and titanium complexes into the corresponding 2-phosphinothioyl and 2-phosphinoyl derivatives, viz., (η5-C5H5)[η 5-C5H4CH2CH2P(S)Ph2]ZrCl2, [η5-C5H4CH2CH2P(S)Ph2]ZrCl3, [η51C5H4CH2CH2P(O)Ph2]ZrCl3·THF, and [η51-C5H4CH2CH2P(O)Ph2]TiCl3 (7), was performed. The NMR spectroscopy data revealed the following order of the coordination ability of the functional groups with respect to the Zr center: Ph2P=O > Ph2P > Ph2P=S. An analogous order was found for the monodentate ligands (Ph3P=O > Ph3P > Ph3P=S) with respect to (η5-C5H5)ZrCl3. The molecular structure of complex 7 was established by X-ray diffraction analysis. Coordination of the Ph2P=O group to the titanium atom was found retained both in the crystalline state and solution.__________Published in Russian in Izvestiya Akademii Nauk. Seriya Khimicheskaya, No. 1, pp. 116–122, January, 2005.  相似文献   

20.
The reaction of dimeric rhodium precursor [Rh(CO)2Cl]2 with two molar equivalent of 1,1,1-tris(diphenylphosphinomethyl)ethane trichalcogenide ligands, [CH3C(CH2P(X)Ph2)3](L), where X = O(a), S(b) and Se(c) affords the complexes of the type [Rh(CO)2Cl(L)] (1a–1c). The complexes 1a–1c have been characterized by elemental analyses, mass spectrometry, IR and NMR (1H, 31P and 13C) spectroscopy and the ligands a–c are structurally determined by single crystal X-ray diffraction. 1a–1c undergo oxidative addition (OA) reactions with different electrophiles such as CH3I, C2H5I and C6H5CH2Cl to give Rh(III) complexes of the types [Rh(CO)(COR)ClXL] {R = –CH3 (2a–2c), –C2H5 (3a–3c); X = I and R = –CH2C6H5 (4a–4c); X = Cl}. Kinetic data for the reaction of a–c with CH3I indicate a first-order reaction. The catalytic activity of 1a–1c for the carbonylation of methanol to acetic acid and its ester is evaluated and a higher turn over number (TON = 1564–1723) is obtained compared to that of the well-known commercial species [Rh(CO)2I2] (TON = 1000) under the reaction conditions: temperature 130 ± 2 °C, pressure 30 ± 2 bar and time 1 h.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号