首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
It is well known that the Rickart property of rings is not a left-right symmetric property. We extend the notion of the left Rickart property of rings to a general module theoretic setting and define 𝔏-Rickart modules. We study this notion for a right R-module M R where R is any ring and obtain its basic properties. While it is known that the endomorphism ring of a Rickart module is a right Rickart ring, we show that the endomorphism ring of an 𝔏-Rickart module is not a left Rickart ring in general. If M R is a finitely generated 𝔏-Rickart module, we prove that End R (M) is a left Rickart ring. We prove that an 𝔏-Rickart module with no set of infinitely many nonzero orthogonal idempotents in its endomorphism ring is a Baer module. 𝔏-Rickart modules are shown to satisfy a certain kind of nonsingularity which we term “endo-nonsingularity.” Among other results, we prove that M is endo-nonsingular and End R (M) is a left extending ring iff M is a Baer module and End R (M) is left cononsingular.  相似文献   

3.
Rickart Modules     
The concept of right Rickart rings (or right p.p. rings) has been extensively studied in the literature. In this article, we study the notion of Rickart modules in the general module theoretic setting by utilizing the endomorphism ring of a module. We provide several characterizations of Rickart modules and study their properties. It is shown that the class of rings R for which every right R-module is Rickart is precisely that of semisimple artinian rings, while the class of rings R for which every free R-module is Rickart is precisely that of right hereditary rings. Connections between a Rickart module and its endomorphism ring are studied. A characterization of precisely when the endomorphism ring of a Rickart module will be a right Rickart ring is provided. We prove that a Rickart module with no infinite set of nonzero orthogonal idempotents in its endomorphism ring is precisely a Baer module. We show that a finitely generated module over a principal ideal domain (PID) is Rickart exactly if it is either semisimple or torsion-free. Examples which delineate the concepts and results are provided.  相似文献   

4.
Sh. Asgari  A. Haghany 《代数通讯》2013,41(5):1605-1623
We introduce the notions of “t-extending modules,” and “t-Baer modules,” which are generalizations of extending modules. The second notion is also a generalization of nonsingular Baer modules. We show that a homomorphic image (hence a direct summand) of a t-extending module and a direct summand of a t-Baer module inherits the property. It is shown that a module M is t-extending if and only if M is t-Baer and t-cononsingular. The rings for which every free right module is t-extending are called right Σ-t-extending. The class of right Σ-t-extending rings properly contains the class of right Σ-extending rings. Among other equivalent conditions for such rings, it is shown that a ring R is right Σ-t-extending, if and only if, every right R-module is t-extending, if and only if, every right R-module is t-Baer, if and only if, every nonsingular right R-module is projective. Moreover, it is proved that for a ring R, every free right R-module is t-Baer if and only if Z 2(R R ) is a direct summand of R and every submodule of a direct product of nonsingular projective R-modules is projective.  相似文献   

5.
6.
In this paper, we introduce and study the dual notion of simple-direct-injective modules. Namely, a right R-module M is called simple-direct-projective if, whenever A and B are submodules of M with B simple and M/A ? B ?M, then A ?M. Several characterizations of simple-direct-projective modules are provided and used to describe some well-known classes of rings. For example, it is shown that a ring R is artinian and serial with J2(R) = 0 if and only if every simple-direct-projective right R-module is quasi-projective if and only if every simple-direct-projective right R -module is a D3-module. It is also shown that a ring R is uniserial with J2(R) = 0 if and only if every simple-direct-projective right R-module is a C3-module if and only if every simple-direct-injective right R -module is a D3-module.  相似文献   

7.
A module M is called extending if, for any submodule X of M, there exists a direct summand of M which contains X as an essential submodule, that is, for any submodule X of M, there exists a closure of X in M which is a direct summand of M. Dually, a module M is said to be lifting if, for any submodule X of M, there exists a direct summand of M which is a co-essential submodule of X, that is, for any submodule X of M, there exists a co-closure of X in M which is a direct summand of M.

Okado (1984 Okado , M. ( 1984 ). On the decomposition of extending modules . Math. Japonica 29 : 939941 . [Google Scholar]) has studied the decomposition of extending modules over right noetherian rings. He obtained the following: A ring R is right noetherian if and only if every extending R-module can be expressed as a direct sum of indecomposable (uniform) modules.

In this article, we show that every (finitely generated) lifting module over a right perfect (semiperfect) ring can be expressed as a direct sum of indecomposable modules. And we consider some application of this result.  相似文献   

8.
We define and investigate t-semisimple modules as a generalization of semisimple modules. A module M is called t-semisimple if every submodule N contains a direct summand K of M such that K is t-essential in N. T-semisimple modules are Morita invariant and they form a strict subclass of t-extending modules. Many equivalent conditions for a module M to be t-semisimple are found. Accordingly, M is t-semisiple, if and only if, M = Z 2(M) ⊕ S(M) (where Z 2(M) is the Goldie torsion submodule and S(M) is the sum of nonsingular simple submodules). A ring R is called right t-semisimple if R R is t-semisimple. Various characterizations of right t-semisimple rings are given. For some types of rings, conditions equivalent to being t-semisimple are found, and this property is investigated in terms of chain conditions.  相似文献   

9.
Noyan Er 《代数通讯》2013,41(5):1909-1920
A module M over a ring R is called a lifting module if every submodule A of M contains a direct summand K of M such that A/K is a small submodule of M/K (e.g., local modules are lifting). It is known that a (finite) direct sum of lifting modules need not be lifting. We prove that R is right Noetherian and indecomposable injective right R-modules are hollow if and only if every injective right R-module is a direct sum of lifting modules. We also discuss the case when an infinite direct sum of finitely generated modules containing its radical as a small submodule is lifting.  相似文献   

10.
We define and investigate T 11-type modules as a generalization of t-extending modules, and modules satisfying C 11 condition. A module M is said to be T 11-type if every t-closed submodule of M has a complement which is a direct summand. Direct sums of T 11-type modules inherit the property. Some equivalent conditions for a module M to be T 11-type are given. We characterize a module M for which every direct summand satisfies T 11 condition. If R R is T 11-type, then R/Z 2(R R ) is a C 2 ring if and only if it is a von Neumann regular ring. Applying this result, we characterize a right t-extending (resp., finitely Σ-t-extending, or Σ-t-extending) ring R for which R/Z 2(R R ) is von Neumann regular.  相似文献   

11.
Let R be an arbitrary ring with identity and M a right R-module with S = EndR(M). Let F be a fully invariant submodule of M and I?1(F) denotes the set {mM:Im?F} for any subset I of S. The module M is called F-Baer if I?1(F) is a direct summand of M for every left ideal I of S. This work is devoted to the investigation of properties of F-Baer modules. We use F-Baer modules to decompose a module into two parts consists of a Baer module and a module determined by fully invariant submodule F, namely, for a module M, we show that M is F-Baer if and only if M = FN where N is a Baer module. By using F-Baer modules, we obtain some new results for Baer rings.  相似文献   

12.
An R-module M is called strongly duo if Tr(N, M) = N for every N ≤ M R . Several equivalent conditions to being strongly duo are given. If M R is strongly duo and reduced, then End R (M) is a strongly regular ring and the converse is true when R is a Dedekind domain and M R is torsion. Over certain rings, nonsingular strongly duo modules are precisely regular duo modules. If R is a Dedekind domain, then M R is strongly duo if and only if either MR or M R is torsion and duo. Over a commutative ring, strongly duo modules are precisely pq-injective duo modules and every projective strongly duo module is a multiplication module. A ring R is called right strongly duo if R R is strongly duo. Strongly regular rings are precisely reduced (right) strongly duo rings. A ring R is Noetherian and all of its factor rings are right strongly duo if and only if R is a serial Artinian right duo ring.  相似文献   

13.
Ismail Amin  Nasr Zeyada 《代数通讯》2013,41(11):4229-4250
If M and N are right R-modules, M is called Socle-N-injective (Soc-N-injective) if every R-homomorphism from the socle of N into M extends to N. Equivalently, for every semisimple submodule K of N, any R-homomorphism f : K → M extends to N. In this article, we investigate the notion of soc-injectivity.  相似文献   

14.
John Clark  Rachid Tribak 《代数通讯》2013,41(11):4390-4402
An R-module M is called almost injective if M is a supplement submodule of every module which contains M. The module M is called F-almost injective if every factor module of M is almost injective. It is shown that a ring R is a right H-ring if and only if R is right perfect and every almost injective module is injective. We prove that a ring R is semisimple if and only if the R-module R R is F-almost injective.  相似文献   

15.
《代数通讯》2013,41(11):4285-4301
Abstract

Let M be a left R-module and F a submodule of M for any ring R. We call M F-semiregular if for every x ∈ M, there exists a decomposition M = A ⊕ B such that A is projective, A ≤ Rx and Rx ∩ B ≤ F. This definition extends several notions in the literature. We investigate some equivalent conditions to F-semiregular modules and consider some certain fully invariant submodules such as Z(M), Soc(M), δ(M). We prove, among others, that if M is a finitely generated projective module, then M is quasi-injective if and only if M is Z(M)-semiregular and M ⊕ M is CS. If M is projective Soc(M)-semiregular module, then M is semiregular. We also characterize QF-rings R with J(R)2 = 0.  相似文献   

16.
In this paper, we prove that R is a two-sided Artinian ring and J is a right annihilator ideal if and only if (i) for any nonzero right module, there is a nonzero linear map from it to a projective module; (ii) every submodule of RR is not a radical module for some right coherent rings. We call a ring a right X ring if Homa(M, R) = 0 for any right module M implies that M = 0. We can prove some left Goldie and right X rings are right Artinian rings. Moreover we characterize semisimple rings by using X rings. A famous Faith‘s conjecture is whether a semipimary PF ring is a QF ring. Similarly we study the relationship between X rings and QF and get many interesting results.  相似文献   

17.
M is called a P-coherent (resp. PP) module if its every principal submodule is finitely presented (resp. projective). M is said to be a Baer module if the annihilator of its every subset is a direct summand of R. In this paper, we investigate the properties of P-coherent, PP and Baer modules. Some known results are extended.  相似文献   

18.
Rachid Tribak 《代数通讯》2013,41(12):4448-4460
We say that a module M is lifting if M is amply supplemented and every supplement submodule of M is a direct summand. The module M is called cofinitely lifting if it is amply cofinitely supplemented and every supplement of any cofinite submodule of M is a direct summand. In this article various properties of cofinitely lifting modules are given. In addition, a generalization of cofinitely lifting modules is investigated.  相似文献   

19.
Let R be a ring. A module MR is said to be GC2 if for any N≤ M with N? M, N is a direct summand of M. In this article, we give some characterizations and properties of GC2 modules and their endomorphism rings, and many results on C 2 modules and GC2 rings are generalized to GC2 modules.  相似文献   

20.
Let k be a field and X a set and P be a set of words over X. Consider the free nonunital k-algebra over X generated by the nonempty words over X and let R be the quotient of this algebra modulo the ideal generated by the words in P. R is called a “nonunital monomial algebra”. A right R-module M is said to be “firm” if M? R R → M given by m ? r? mr is an isomorphism. In this article we prove that if R is a nonunital monomial algebra, the category of firm modules is Grothendieck.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号