首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A right module M over a ring R is said to be retractable if Hom R (M, N) ≠ 0 for each nonzero submodule N of M. We show that M ? R RG is a retractable RG-module if and only if M R is retractable for every finite group G. The ring R is (finitely) mod-retractable if every (finitely generated) right R-module is retractable. Some comparisons between max rings, semiartinian rings, perfect rings, noetherian rings, nonsingular rings, and mod-retractable rings are investigated. In particular, we prove ring-theoretical criteria of right mod-retractability for classes of all commutative, left perfect, and right noetherian rings.  相似文献   

2.
It is well known that the Rickart property of rings is not a left-right symmetric property. We extend the notion of the left Rickart property of rings to a general module theoretic setting and define 𝔏-Rickart modules. We study this notion for a right R-module M R where R is any ring and obtain its basic properties. While it is known that the endomorphism ring of a Rickart module is a right Rickart ring, we show that the endomorphism ring of an 𝔏-Rickart module is not a left Rickart ring in general. If M R is a finitely generated 𝔏-Rickart module, we prove that End R (M) is a left Rickart ring. We prove that an 𝔏-Rickart module with no set of infinitely many nonzero orthogonal idempotents in its endomorphism ring is a Baer module. 𝔏-Rickart modules are shown to satisfy a certain kind of nonsingularity which we term “endo-nonsingularity.” Among other results, we prove that M is endo-nonsingular and End R (M) is a left extending ring iff M is a Baer module and End R (M) is left cononsingular.  相似文献   

3.
Weakly regular modules over normal rings   总被引:1,自引:1,他引:0  
Under study are some conditions for the weakly regular modules to be closed under direct sums and the rings over which all modules are weakly regular. For an arbitrary right R-module M, we prove that every module in the category σ(M) is weakly regular if and only if each module in σ(M) is either semisimple or contains a nonzero M-injective submodule. We describe the normal rings over which all modules are weakly regular.  相似文献   

4.
Rickart Modules     
The concept of right Rickart rings (or right p.p. rings) has been extensively studied in the literature. In this article, we study the notion of Rickart modules in the general module theoretic setting by utilizing the endomorphism ring of a module. We provide several characterizations of Rickart modules and study their properties. It is shown that the class of rings R for which every right R-module is Rickart is precisely that of semisimple artinian rings, while the class of rings R for which every free R-module is Rickart is precisely that of right hereditary rings. Connections between a Rickart module and its endomorphism ring are studied. A characterization of precisely when the endomorphism ring of a Rickart module will be a right Rickart ring is provided. We prove that a Rickart module with no infinite set of nonzero orthogonal idempotents in its endomorphism ring is precisely a Baer module. We show that a finitely generated module over a principal ideal domain (PID) is Rickart exactly if it is either semisimple or torsion-free. Examples which delineate the concepts and results are provided.  相似文献   

5.
An R-module M is called strongly duo if Tr(N, M) = N for every N ≤ M R . Several equivalent conditions to being strongly duo are given. If M R is strongly duo and reduced, then End R (M) is a strongly regular ring and the converse is true when R is a Dedekind domain and M R is torsion. Over certain rings, nonsingular strongly duo modules are precisely regular duo modules. If R is a Dedekind domain, then M R is strongly duo if and only if either MR or M R is torsion and duo. Over a commutative ring, strongly duo modules are precisely pq-injective duo modules and every projective strongly duo module is a multiplication module. A ring R is called right strongly duo if R R is strongly duo. Strongly regular rings are precisely reduced (right) strongly duo rings. A ring R is Noetherian and all of its factor rings are right strongly duo if and only if R is a serial Artinian right duo ring.  相似文献   

6.
We characterize right Noetherian rings over which all simple modules are almost injective. It is proved that R is such a ring, if and only if, the complements of semisimple submodules of every R-module M are direct summands of M, if and only if, R is a finite direct sum of right ideals Ir, where Ir is either a Noetherian V-module with zero socle, or a simple module, or an injective module of length 2. A commutative Noetherian ring for which all simple modules are almost injective is precisely a finite direct product of rings Ri, where Ri is either a field or a quasi-Frobenius ring of length 2. We show that for commutative rings whose all simple modules are almost injective, the properties of Kasch, (semi)perfect, semilocal, quasi-Frobenius, Artinian, and Noetherian coincide.  相似文献   

7.
For a ring R and a right R-module M, a submodule N of M is said to be δ-small in M if, whenever N+X=M with M/X singular, we have X=M. Let ℘ be the class of all singular simple modules. Then δ(M)=Σ{ LM| L is a δ-small submodule of M} = Re jm(℘)=∩{ NM: M/N∈℘. We call M δ-coatomic module whenever NM and M/N=δ(M/N) then M/N=0. And R is called right (left) δ-coatomic ring if the right (left) R-module R R(RR) is δ-coatomic. In this note, we study δ-coatomic modules and ring. We prove M=⊕ i=1 n Mi is δ-coatomic if and only if each M i (i=1,…, n) is δ-coatomic.  相似文献   

8.
9.
Relative notions of flatness are introduced as a mean to gauge the extent of the flatness of any given module. Every module is thus endowed with a flatness domain and, for every ring, the collection of flatness domains of all of its modules is a lattice with respect to class inclusion. This lattice, the flatness profile of the ring, allows us, in particular, to focus on modules which have a smallest flatness domain (namely, one consisting of all regular modules.) We establish that such modules exist over arbitrary rings and we call them Rugged Modules. Rings all of whose (cyclic) modules are rugged are shown to be precisely the von Neumann regular rings. We consider rings without a flatness middle class (i.e., rings for which modules must be either flat or rugged.) We obtain that, over a right Noetherian ring every left module is rugged or flat if and only if every right module is poor or injective if and only if R = S×T, where S is semisimple Artinian and T is either Morita equivalent to a right PCI-domain, or T is right Artinian whose Jacobson radical properly contains no nonzero ideals. Character modules serve to bridge results about flatness and injectivity profiles; in particular, connections between rugged and poor modules are explored. If R is a ring whose regular left modules are semisimple, then a right module M is rugged if and only if its character left module M+ is poor. Rugged Abelian groups are fully characterized and shown to coincide precisely with injectively poor and projectively poor Abelian groups. Also, in order to get a feel for the class of rugged modules over an arbitrary ring, we consider the homological ubiquity of rugged modules in the category of all modules in terms of the feasibility of rugged precovers and covers for arbitrary modules.  相似文献   

10.
It is proved that a commutative ring is clean if and only if it is Gelfand with a totally disconnected maximal spectrum. It is shown that each indecomposable module over a commutative ring R satisfies a finite condition if and only if R P is an Artinian valuation ring for each maximal prime ideal P. Commutative rings for which each indecomposable module has a local endomorphism ring are studied. These rings are clean and elementary divisor rings. It is shown that each commutative ring R with a Hausdorff and totally disconnected maximal spectrum is local-global. Moreover, if R is arithmetic, then R is an elementary divisor ring.  相似文献   

11.
Rachid Tribak 《代数通讯》2013,41(8):3190-3206
We introduce and study the notion of wd-Rickart modules (i.e. modules M such that for every nonzero endomorphism ? of M, the image of ? contains a nonzero direct summand of M). We show that the class of rings R for which every right R-module is wd-Rickart is exactly that of right semi-artinian right V-rings. We prove that a module M is dual Baer if and only if M is wd-Rickart and M has the strong summand sum property. Several structure results for some classes of wd-Rickart modules and dual Baer modules are provided. Some relevant counterexamples are indicated.  相似文献   

12.
Let M be a left R-module. In this paper a generalization of the notion of m-system set of rings to modules is given. Then for a submodule N of M, we define := { m ε M: every m-system containing m meets N}. It is shown that is the intersection of all prime submodules of M containing N. We define rad R (M) = . This is called Baer-McCoy radical or prime radical of M. It is shown that if M is an Artinian module over a PI-ring (or an FBN-ring) R, then M/rad R (M) is a Noetherian R-module. Also, if M is a Noetherian module over a PI-ring (or an FBN-ring) R such that every prime submodule of M is virtually maximal, then M/rad R (M) is an Artinian R-module. This yields if M is an Artinian module over a PI-ring R, then either rad R (M) = M or rad R (M) = ∩ i=1 n for some maximal ideals of R. Also, Baer’s lower nilradical of M [denoted by Nil* ( R M)] is defined to be the set of all strongly nilpotent elements of M. It is shown that, for any projective R-module M, rad R (M) = Nil*( R M) and, for any module M over a left Artinian ring R, rad R (M) = Nil*( R M) = Rad(M) = Jac(R)M. This research was in part supported by a grant from IPM (No. 85130016). Also this work was partially supported by IUT (CEAMA). The author would like to thank the anonymous referee for a careful checking of the details and for helpful comments that improved this paper.  相似文献   

13.
V. T. Markov 《代数通讯》2020,48(1):149-153
Abstract

It is proved that a ring R is a right uniserial, right Noetherian centrally essential ring if and only if R is a commutative discrete valuation domain or a left and right Artinian, left and right uniserial ring. It is also proved that there exist non-commutative uniserial Artinian centrally essential rings.  相似文献   

14.
The present paper is a sequel to our previous work on almost uniserial rings and modules, which appeared in the Journal of Algebra in 2016; it studies rings over which every (left and right) module is almost serial. A module is almost uniserial if any two of its submodules are either comparable in inclusion or isomorphic. And a module is almost serial if it is a direct sum of almost uniserial modules. The results of the paper are inspired by a characterization of Artinian serial rings as rings having all left (or right) modules serial. We prove that if R is a local ring and all left R-modules are almost serial then R is an Artinian ring which is uniserial either on the left or on the right. We also produce a connection between local rings having all left and right modules almost serial, local balanced rings studied by Dlab and Ringel and local Köthe rings. Finally we prove Morita invariance of the almost serial property and list some consequences.  相似文献   

15.
Let R be a ring. A module MR is said to be GC2 if for any N≤ M with N? M, N is a direct summand of M. In this article, we give some characterizations and properties of GC2 modules and their endomorphism rings, and many results on C 2 modules and GC2 rings are generalized to GC2 modules.  相似文献   

16.
A ring R is called left GP-injective if for any 0 ≠ a ∈ R, there exists n > 0 such that a n  ≠ 0 and a n R = r(l(a n )). It is proved that (1) every right Noetherian left GP-injective ring such that every complement left ideal is a left annihilator is a QF ring, (2) every left GP-injective ring with ACC on left annihilators such that every complement left ideal is a left annihilator is a QF ring, and (3) every left P-injective left CS ring satisfying ACC on essential right ideals is a QF ring. Several well-known results on QF rings are obtained as corollaries.  相似文献   

17.
Yiqiang Zhou 《代数通讯》2013,41(2):687-698
A module M R is defined to be strongly compressible (or SC for short) if for every essential submodule N of M, there exists X ? E(M) such that M ? X ? N. We show that a ring R is semiprime right Goldie iff R Ris SC module iff every right ideal of R is SC module iff every submodule of each progenerator of Mod-R is SC module. As corollaries of this result, we obtain some new module-theoretic characterizations of semiprime Goldie rings, prime (right) Goldie rings and Prüfer rings, etc., etc.,respectively. And the characterization theorem of semiprime Goldie rings of López-Permouth, Rizvi and Yousif by using weakly-injective modules can be regarded as a corollary of our results.  相似文献   

18.
A module M is called extending if, for any submodule X of M, there exists a direct summand of M which contains X as an essential submodule, that is, for any submodule X of M, there exists a closure of X in M which is a direct summand of M. Dually, a module M is said to be lifting if, for any submodule X of M, there exists a direct summand of M which is a co-essential submodule of X, that is, for any submodule X of M, there exists a co-closure of X in M which is a direct summand of M.

Okado (1984 Okado , M. ( 1984 ). On the decomposition of extending modules . Math. Japonica 29 : 939941 . [Google Scholar]) has studied the decomposition of extending modules over right noetherian rings. He obtained the following: A ring R is right noetherian if and only if every extending R-module can be expressed as a direct sum of indecomposable (uniform) modules.

In this article, we show that every (finitely generated) lifting module over a right perfect (semiperfect) ring can be expressed as a direct sum of indecomposable modules. And we consider some application of this result.  相似文献   

19.
20.
Let R be a commutative Noetherian ring and A an Artinian R-module. We prove that if A has finite Gorenstein injective dimension, then A possesses a Gorenstein injective envelope which is special and Artinian. This, in particular, yields that over a Gorenstein ring any Artinian module possesses a Gorenstein injective envelope which is special and Artinian.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号