首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
2.
3.
A graph G is an odd‐circuit tree if every block of G is an odd length circuit. It is proved in this paper that the product of every pair of graphs G and H admits a nowhere‐zero 3‐flow unless G is an odd‐circuit tree and H has a bridge. This theorem is a partial result to the Tutte's 3‐flow conjecture and generalizes a result by Imrich and Skrekovski [7] that the product of two bipartite graphs admits a nowhere‐zero 3‐flow. A byproduct of this theorem is that every bridgeless Cayley graph G = Cay(Γ,S) on an abelian group Γ with a minimal generating set S admits a nowhere‐zero 3‐flow except for odd prisms. © 2005 Wiley Periodicals, Inc. J Graph Theory  相似文献   

4.
A d‐regular graph is said to be superconnected if any disconnecting subset with cardinality at most d is formed by the neighbors of some vertex. A superconnected graph that remains connected after the failure of a vertex and its neighbors will be called vosperian. Let Γ be a vertex‐transitive graph of degree d with order at least d+4. We give necessary and sufficient conditions for the vosperianity of Γ. Moreover, assuming that distinct vertices have distinct neighbors, we show that Γ is vosperian if and only if it is superconnected. Let G be a group and let S?G\{1} with S=S?1. We show that the Cayley graph, Cay(G, S), defined on G by S is vosperian if and only if G\(S∪{1}) is not a progression and for every non‐trivial subgroup H and every aG, If moreover S is aperiodic, then Cay(G, S) is vosperian if and only if it is superconnected. © 2011 Wiley Periodicals, Inc. J Graph Theory 67:124‐138, 2011  相似文献   

5.
Let G be a finite group, and let Cay(G, S) be a Cayley digraph of G. If, for all TG, Cay(G, S) ≅ Cay(G, T) implies Sα = T for some α ∈ Aut(G), then Cay(G, S) is called a CI-graph of G. For a group G, if all Cayley digraphs of valency m are CI-graphs, then G is said to have the m-DCI property; if all Cayley graphs of valency m are CI-graphs, then G is said to have the m-CI property. It is shown that every finite group of order greater than 2 has a nontrivial CI-graph, and all finite groups with the m-CI property and with the m-DCI property are characterized for small values of m. A general investigation is made of the structure of Sylow subgroups of finite groups with the m-DCI property and with the m-CI property for large values of m. © 1998 John Wiley & Sons, Inc. J Graph Theory 27: 21–31, 1998  相似文献   

6.
A vertex x in a digraph D is said to resolve a pair u, v of vertices of D if the distance from u to x does not equal the distance from v to x. A set S of vertices of D is a resolving set for D if every pair of vertices of D is resolved by some vertex of S. The smallest cardinality of a resolving set for D, denoted by dim(D), is called the metric dimension for D. Sharp upper and lower bounds for the metric dimension of the Cayley digraphs Cay(Δ:Γ), where Γ is the group Zn1Zn2⊕?⊕Znm and Δ is the canonical set of generators, are established. The exact value for the metric dimension of Cay({(0,1),(1,0)}:ZnZm) is found. Moreover, the metric dimension of the Cayley digraph of the dihedral group Dn of order 2n with a minimum set of generators is established. The metric dimension of a (di)graph is formulated as an integer programme. The corresponding linear programming formulation naturally gives rise to a fractional version of the metric dimension of a (di)graph. The fractional dual implies an integer dual for the metric dimension of a (di)graph which is referred to as the metric independence of the (di)graph. The metric independence of a (di)graph is the maximum number of pairs of vertices such that no two pairs are resolved by the same vertex. The metric independence of the n-cube and the Cayley digraph Cay(Δ:Dn), where Δ is a minimum set of generators for Dn, are established.  相似文献   

7.
Let D be a finite graph. A semigroup S is said to be Cayley D-saturated with respect to a subset T of S if, for all infinite subsets V of S, there exists a subgraph of Cay(S,T) isomorphic to D with all vertices in V. The purpose of this paper is to characterize the Cayley D-saturated property of a semigroup S with respect to any subset TS. In particular, the Cayley D-saturated property of a semigroup S with respect to any subsemigroup T is characterized.  相似文献   

8.
A group G is called a CI-group if, for any subsets S,TG, whenever two Cayley graphs Cay(G,S) and Cay(G,T) are isomorphic, there exists an element σ∊Aut(G) such that Sσ = T. The problem of seeking finite CI-groups is a long-standing open problem in the area of Cayley graphs. This paper contributes towards a complete classification of finite CI-groups. First it is shown that the Frobenius groups of order 4p and 6p, and the metacyclic groups of order 9p of which the centre has order 3 are not CI-groups, where p is an odd prime. Then a shorter explicit list is given of candidates for finite CI-groups. Finally, some new families of finite CI-groups are found, that is, the metacyclic groups of order 4p (with centre of order 2) and of order 8p (with centre of order 4) are CI-groups, and a proof is given for the Frobenius group of order 3p to be a CI-group, where p is a prime. C. H. Li was supported by an Australian Research Council Discovery Grant and a QEII Fellowship. Z. P. Lu was partially supported by the NNSF and TYYF of China. P. P. Pálfy was supported by the Hungarian Science Foundation (OTKA), grant no. T38059.  相似文献   

9.
10.
In this paper, we first give a characterization of Cayley graphs of rectangular groups. Then, vertex-transitivity of Cayley graphs of rectangular groups is considered. Further, it is shown that Cayley graphs Cay(S,C) which are automorphism-vertex-transitive, are in fact Cayley graphs of rectangular groups, if the subsemigroup generated by C is an orthodox semigroup. Finally, a characterization of vertex-transitive graphs which are Cayley graphs of finite semigroups is concluded.  相似文献   

11.
Zhu (Semigroup Forum 84(3), 144–156, 2012) investigated some combinatorial properties of generalized Cayley graphs of semigroups. In Remark 3.8 of (Zhu, Semigroup Forum 84(3), 144–156, 2012), Zhu proposed the following question: It may be interesting to characterize semigroups S such that Cay(S,ω l )=Cay(S,ω r ). In this short note, we prove that for any regular semigroup S, Cay(S,ω l )=Cay(S,ω r ) if and only if S is a Clifford semigroup.  相似文献   

12.
Let Zp denote the cyclic group of order p where p is a prime number. Let X = X(Zp, H) denote the Cayley digraph of Zp with respect to the symbol H. We obtain a necessary and sufficient condition on H so that the complete graph on p vertices can be edge‐partitioned into three copies of Cayley digraphs of the same group Zp each isomorphic to X. Based on this condition on H, we then enumerate all such Cayley graphs and digraphs. © 2006 Wiley Periodicals, Inc. J Graph Theory 52: 243–256, 2006  相似文献   

13.
14.
Let S be a subset of a finite abelian group G. The Cayley sum graph Cay+(G, S) of G with respect to S is a graph whose vertex set is G and two vertices g and h are joined by an edge if and only if g + hS. We call a finite abelian group G a Cayley sum integral group if for every subset S of G, Cay+(G, S) is integral i.e., all eigenvalues of its adjacency matrix are integers. In this paper, we prove that all Cayley sum integral groups are represented by Z3 and Zn2 n, n ≥ 1, where Zk is the group of integers modulo k. Also, we classify simple connected cubic integral Cayley sum graphs.  相似文献   

15.
A weak Cayley table isomorphism is a bijection φ: G → H of groups such that φ(xy) ~ φ(x)φ(y) for all x, y ∈ G. Here ~denotes conjugacy. When G = H the set of all weak Cayley table isomorphisms φ: G → G forms a group 𝒲(G) that contains the automorphism group Aut(G) and the inverse map I: G → G, x → x ?1. Let 𝒲0(G) = ?Aut(G), I? ≤ 𝒲(G) and say that G has trivial weak Cayley table group if 𝒲(G) = 𝒲0(G). We show that all finite irreducible Coxeter groups (except possibly E 8) have trivial weak Cayley table group, as well as most alternating groups. We also consider some sporadic simple groups.  相似文献   

16.
Let R be a commutative ring, U(R) be the set of all unit elements of R, G be a multiplicative subgroup of U(R) and S be a non-empty subset of G such that S ?1={s ?1:?sS}?S. In [16], K. Khashyarmanesh et al. defined a graph of R, denoted by Γ(R,G,S), which generalizes both unit and unitary Cayley graphs of R. In this paper, we derive several bounds for the genus of Γ(R,U(R),S). Moreover, we characterize all commutative Artinian rings R for which the genus of Γ(R,U(R),S) is one. This leads to the characterization of all commutative Artinian rings whose unit and unitary Cayley graphs have genus one.  相似文献   

17.
A necessary and sufficient condition is given for two Cayley digraphs X1 = Cay(G1, S1) and X2 = Cay(G2, S2) to be isomorphic, where the groups Gi are nonisomorphic abelian 2‐groups, and the digraphs Xi have a regular cyclic group of automorphisms. Our result extends that of Morris [J Graph Theory 3 (1999), 345–362] concerning p‐groups Gi, where p is an odd prime. Copyright © 2011 Wiley Periodicals, Inc. J Graph Theory  相似文献   

18.
Let Γ be a regular graph with n vertices, diameter D, and d + 1 different eigenvalues λ > λ1 > ··· > λd. In a previous paper, the authors showed that if P(λ) > n − 1, then Dd − 1, where P is the polynomial of degree d − 1 which takes alternating values ± 1 at λ1, …, λd. The graphs satisfying P(λ) = n − 1, called boundary graphs, have shown to deserve some attention because of their rich structure. This paper is devoted to the study of this case and, as a main result, it is shown that those extremal (D = d) boundary graphs where each vertex have maximum eccentricity are, in fact, 2-antipodal distance-regular graphs. The study is carried out by using a new sequence of orthogonal polynomials, whose special properties are shown to be induced by their intrinsic symmetry. © 1998 John Wiley & Sons, Inc. J Graph Theory 27: 123–140, 1998  相似文献   

19.
Behnam Khosravi 《代数通讯》2018,46(7):3006-3013
For a finite monoid S, let ν(S) (νd(S)) denote the least number n such that there exists a graph (directed graph) Γ of order n with End(Γ)?S. Also let rank(S) be the smallest number of elements required to generate S. In this paper, we use Cayley digraphs of monoids, to connect lower bounds of ν(S) (νd(S)) to the lower bounds of rank(S). On the other hand, we connect upper bounds of rank(S) to upper bounds of ν(S) (νd(S)).  相似文献   

20.
Let ? be a prime ring with 1 containing a nontrivial idempotent E, and let ?′ be another prime ring. If Φ:? → ?′ is a multiplicative Lie isomorphism, then Φ(T + S) = Φ(T) + Φ(S) + Z T,S for all T, S ∈ ?, where Z T,S is an element in the center 𝒵′ of ?′ depending on T and S.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号