首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We study the limits of the finite graphs that admit some vertex-primitive group of automorphisms with a regular abelian normal subgroup. It was shown in [1] that these limits are Cayley graphs of the groups ?d. In this article we prove that for each d > 1 the set of Cayley graphs of ?d presenting the limits of finite graphs with vertex-primitive and edge-transitive groups of automorphisms is countable (in fact, we explicitly give countable subsets of these limit graphs). In addition, for d < 4 we list all Cayley graphs of ?d that are limits of minimal vertex-primitive graphs. The proofs rely on a connection of the automorphism groups of Cayley graphs of ?d with crystallographic groups.  相似文献   

2.
In this paper we investigate locally primitive Cayley graphs of finite nonabelian simple groups. First, we prove that, for any valency d for which the Weiss conjecture holds (for example, d?20 or d is a prime number by Conder, Li and Praeger (2000) [1]), there exists a finite list of groups such that if G is a finite nonabelian simple group not in this list, then every locally primitive Cayley graph of valency d on G is normal. Next we construct an infinite family of p-valent non-normal locally primitive Cayley graph of the alternating group for all prime p?5. Finally, we consider locally primitive Cayley graphs of finite simple groups with valency 5 and determine all possible candidates of finite nonabelian simple groups G such that the Cayley graph Cay(G,S) might be non-normal.  相似文献   

3.
In this paper, we give a new lifting construction of “hyperbolic” type of strongly regular Cayley graphs. Also we give new constructions of strongly regular Cayley graphs over the additive groups of finite fields based on partitions of subdifference sets of the Singer difference sets. Our results unify some recent constructions of strongly regular Cayley graphs related to m-ovoids and i-tight sets in finite geometry. Furthermore, some of the strongly regular Cayley graphs obtained in this paper are new or nonisomorphic to known strongly regular graphs with the same parameters.  相似文献   

4.
A graph is called edge-transitive if its full automorphism group acts transitively on its edge set.In this paper,by using classification of finite simple groups,we classify tetravalent edge-transitive graphs of order p2q with p,q distinct odd primes.The result generalizes certain previous results.In particular,it shows that such graphs are normal Cayley graphs with only a few exceptions of small orders.  相似文献   

5.
Yifei Hao  Xing Gao  Yanfeng Luo 《代数通讯》2013,41(8):2874-2883
In this article, the Cayley graphs of Brandt semigroups are investigated. The basic structures and properties of this kind of Cayley graphs are given, and a necessary and sufficient condition is given for the components of Cayley graphs of Brandt semigroups to be strongly regular. As an application, the generalized Petersen graph and k-partite graph, which cannot be obtained from the Cayley graphs of groups, can be constructed as a component of the Cayley graphs of Brandt semigroups.  相似文献   

6.
We consider the class of the topologically locally finite (in short TLF) planar vertex-transitive graphs. We characterize these graphs by finite combinatorial objects called labeling schemes. As a result, we are able to enumerate and describe all TLF-planar vertex-transitive graphs of given degree, as well as most of their transitive groups of automorphisms. In addition,we are able to decide whether a given TLF-planar transitive graph is Cayley or not. This class contains all the one-ended planar Cayley graphs and the normal transitive tilings of the plane.  相似文献   

7.
A graph is called edge-primitive if its automorphism group acts primitively on its edge set. In 1973, Weiss (1973) determined all edge-primitive graphs of valency three, and recently Guo et al. (2013,2015) classified edge-primitive graphs of valencies four and five. In this paper, we determine all edge-primitive Cayley graphs on abelian groups and dihedral groups.  相似文献   

8.
We define a group G to be graphically abelian if the function g?g−1 induces an automorphism of every Cayley graph of G. We give equivalent characterizations of graphically abelian groups, note features of the adjacency matrices for Cayley graphs of graphically abelian groups, and show that a non-abelian group G is graphically abelian if and only if G=E×Q, where E is an elementary abelian 2-group and Q is a quaternion group.  相似文献   

9.
For a positive integer n, does there exist a vertex-transitive graph Γ on n vertices which is not a Cayley graph, or, equivalently, a graph Γ on n vertices such that Aut Γ is transitive on vertices but none of its subgroups are regular on vertices? Previous work (by Alspach and Parsons, Frucht, Graver and Watkins, Marusic and Scapellato, and McKay and the second author) has produced answers to this question if n is prime, or divisible by the square of some prime, or if n is the product of two distinct primes. In this paper we consider the simplest unresolved case for even integers, namely for integers of the form n = 2pq, where 2 < q < p, and p and q are primes. We give a new construction of an infinite family of vertex-transitive graphs on 2pq vertices which are not Cayley graphs in the case where p ≡ 1 (mod q). Further, if p ? 1 (mod q), pq ≡ 3(mod 4), and if every vertex-transitive graph of order pq is a Cayley graph, then it is shown that, either 2pq = 66, or every vertex-transitive graph of order 2pq admitting a transitive imprimitive group of automorphisms is a Cayley graph.  相似文献   

10.
For a finite group G, a Cayley graph on G is said to be normal if . In this note, we prove that connected cubic non-symmetric Cayley graphs of the ten finite non-abelian simple groups G in the list of non-normal candidates given in [X.G. Fang, C.H. Li, J. Wang, M.Y. Xu, On cubic Cayley graphs of finite simple groups, Discrete Math. 244 (2002) 67-75] are normal.  相似文献   

11.
A graph G is one-regular if its automorphism group Aut(G) acts transitively and semiregularly on the arc set. A Cayley graph Cay(Г, S) is normal if Г is a normal subgroup of the full automorphism group of Cay(Г, S). Xu, M. Y., Xu, J. (Southeast Asian Bulletin of Math., 25, 355-363 (2001)) classified one-regular Cayley graphs of valency at most 4 on finite abelian groups. Marusic, D., Pisanski, T. (Croat. Chemica Acta, 73, 969-981 (2000)) classified cubic one-regular Cayley graphs on a dihedral group, and all of such graphs turn out to be normal. In this paper, we classify the 4-valent one-regular normal Cayley graphs G on a dihedral group whose vertex stabilizers in Aut(G) are cyclic. A classification of the same kind of graphs of valency 6 is also discussed.  相似文献   

12.
In 1983, the second author [D. Maru?i?, Ars Combinatoria 16B (1983), 297–302] asked for which positive integers n there exists a non‐Cayley vertex‐transitive graph on n vertices. (The term non‐Cayley numbers has later been given to such integers.) Motivated by this problem, Feng [Discrete Math 248 (2002), 265–269] asked to determine the smallest valency ?(n) among valencies of non‐Cayley vertex‐transitive graphs of order n. As cycles are clearly Cayley graphs, ?(n)?3 for any non‐Cayley number n. In this paper a goal is set to determine those non‐Cayley numbers n for which ?(n) = 3, and among the latter to determine those for which the generalized Petersen graphs are the only non‐Cayley vertex‐transitive graphs of order n. It is known that for a prime p every vertex‐transitive graph of order p, p2 or p3 is a Cayley graph, and that, with the exception of the Coxeter graph, every cubic non‐Cayley vertex‐transitive graph of order 2p, 4p or 2p2 is a generalized Petersen graph. In this paper the next natural step is taken by proving that every cubic non‐Cayley vertex‐transitive graph of order 4p2, p>7 a prime, is a generalized Petersen graph. In addition, cubic non‐Cayley vertex‐transitive graphs of order 2pk, where p>7 is a prime and k?p, are characterized. © 2011 Wiley Periodicals, Inc. J Graph Theory 69: 77–95, 2012  相似文献   

13.
A graph is said to be s-arc-regular if its full automorphism group acts regularly on the set of its s-arcs. In this paper, we investigate connected cubic s-arc-regular Cayley graphs of finite nonabelian simple groups. Two sufficient and necessary conditions for such graphs to be 1- or 2-arcregular are given and based on the conditions, several infinite families of 1- or 2-arc-regular cubic Cayley graphs of alternating groups are constructed. This work was supported by Guangxi Science Foundations (Grant No. 0832054) and Guangxi Postgraduate Education Innovation Research (Grant No. 2008105930701M102)  相似文献   

14.
In this paper we consider the existence of a 1-factorization of undirected Cayley graphs of groups of even order. We show that a 1-factorization exists for all generating sets for even order abelian groups, dihedral groups, and dicyclic groups and for all minimal generating sets for even order nilpotent groups and for Dm × Zn. We also derive other results that are useful in considering specific Cayley graphs. These results support the conjecture that all Cayley graphs of groups of even order are 1-factorizable. If this is not the case the same result may hold for minimal generating sets.  相似文献   

15.
Let X be a vertex‐transitive graph, that is, the automorphism group Aut(X) of X is transitive on the vertex set of X. The graph X is said to be symmetric if Aut(X) is transitive on the arc set of X. suppose that Aut(X) has two orbits of the same length on the arc set of X. Then X is said to be half‐arc‐transitive or half‐edge‐transitive if Aut(X) has one or two orbits on the edge set of X, respectively. Stabilizers of symmetric and half‐arc‐transitive graphs have been investigated by many authors. For example, see Tutte [Canad J Math 11 (1959), 621–624] and Conder and Maru?i? [J Combin Theory Ser B 88 (2003), 67–76]. It is trivial to construct connected tetravalent symmetric graphs with arbitrarily large stabilizers, and by Maru?i? [Discrete Math 299 (2005), 180–193], connected tetravalent half‐arc‐transitive graphs can have arbitrarily large stabilizers. In this article, we show that connected tetravalent half‐edge‐transitive graphs can also have arbitrarily large stabilizers. A Cayley graph Cay(G, S) on a group G is said to be normal if the right regular representation R(G) of G is normal in Aut(Cay(G, S)). There are only a few known examples of connected tetravalent non‐normal Cayley graphs on non‐abelian simple groups. In this article, we give a sufficient condition for non‐normal Cayley graphs and by using the condition, infinitely many connected tetravalent non‐normal Cayley graphs are constructed. As an application, all connected tetravalent non‐normal Cayley graphs on the alternating group A6 are determined. © 2011 Wiley Periodicals, Inc. J Graph Theory  相似文献   

16.
A (k, g)-cage is a k-regular graph of girth g of minimum order. While many of the best known constructions of small k-regular graphs of girth g are known to be Cayley graphs, no general theory of the relation between the girth of a Cayley graph and the structure of the underlying group has been developed. We attempt to fill the gap by focusing on the girths of Caley graphs of nilpotent and solvable groups, and present a series of results supporting the intuitive idea that the closer a group is to being abelian, the less suitable it is for constructing Cayley graphs of large girths. Specifically, we establish the existence of upper bounds on the girths of Cayley graphs with respect to the nilpotency class and/or the length of the derived sequence of the underlying groups.  相似文献   

17.
18.
A graph G is said to be semi-hyper-connected if the removal of every minimum cut of G creates exactly two connected components. In this paper, we characterize semi-hyper-connected vertex transitive graphs, in particular Cayley graphs.  相似文献   

19.
In this paper, it is proved that any connected Cayley graph on an abelian group of order pq orp 2 has a hamiltonian decomposition, wherep andq are odd primes. This result answers partially a conjecture of Alspach concerning hamiltonian decomposition of 2k-regular connected Cayley graphs on abelian groups.  相似文献   

20.
The normality of symmetry property of Cayley graphs of valencies 3 and 4 on the alternating group A5 is studied. We prove that all but four such graphs are normal; that A5 is not 5-CI. A complete classification of all arc-transitive Cayley graphs on A5 of valencies 3 and 4 as well as some examples of trivalent and tetravalent GRRs of A5 is given.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号