首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
The nonsoluble length λ(G) of a finite group G is defined as the minimum number of nonsoluble factors in a normal series of G each of whose quotients either is soluble or is a direct product of nonabelian simple groups. The generalized Fitting height of a finite group G is the least number h = h* (G) such that F* h (G) = G, where F* 1 (G) = F* (G) is the generalized Fitting subgroup, and F* i+1(G) is the inverse image of F* (G/F*i (G)). In the present paper we prove that if λ(J) ≤ k for every 2-generator subgroup J of G, then λ(G) ≤ k. It is conjectured that if h* (J) ≤ k for every 2-generator subgroup J, then h* (G) ≤ k. We prove that if h* (〈x, xg 〉) ≤ k for allx, gG such that 〈x, xg 〉 is soluble, then h* (G) is k-bounded.  相似文献   

2.
Let A be an abelian group and let ι be the automorphism of A defined by: ι: a ? a?1. A Cayley graph Γ = Cay(A,S) is said to have an automorphism group as small as possible if Aut(Γ)=A?<ι>. In this paper, we show that almost all Cayley graphs on abelian groups have automorphism group as small as possible, proving a conjecture of Babai and Godsil.  相似文献   

3.
A graph G = (V,E) is an integral sum graph if there exists a labeling S(G) ? Z such that V = S(G) and every two distinct vertices u, υV are adjacent if and only if u + υV. A connected graph G = (V,E) is called unicyclic if |V| = |E|. In this paper two infinite series are constructed of unicyclic graphs that are not integral sum graphs.  相似文献   

4.
Let G be a nonabelian group, and associate the noncommuting graph ?(G) with G as follows: the vertex set of ?(G) is G\Z(G) with two vertices x and y joined by an edge whenever the commutator of x and y is not the identity. Let S 4(q) be the projective symplectic simple group, where q is a prime power. We prove that if G is a group with ?(G) ? ?(S 4(q)) then G ? S 4(q).  相似文献   

5.
A group G is called a CI-group provided that the existence of some automorphism σ ∈ Aut(G) such that σ(A) = B follows from an isomorphism Cay(G, A) ? = Cay (G, B) between Cayley graphs, where A and B are two systems of generators for G. We prove that every finitely generated abelian group is a CI-group.  相似文献   

6.
We study the problem of removing an element from an additive basis in a general abelian group. We introduce analogues of the classical functions X, S and E (defined in the case of ?) and obtain bounds on them. Our estimates on the functions S G and E G are valid for general abelian groups G while in the case of X G we show that distinct types of behaviours may occur depending on G.  相似文献   

7.
This paper contains several results about the structure of the congruence kernel C(S)(G) of an absolutely almost simple simply connected algebraic group G over a global field K with respect to a set of places S of K. In particular, we show that C(S)(G)) is always trivial if S contains a generalized arithmetic progression. We also give a criterion for the centrality of C(S)(G) in the general situation in terms of the existence of commuting lifts of the groups G(Kv) for v ? S in the S-arithmetic completion ?(S). This result enables one to give simple proofs of the centrality in a number of cases. Finally, we show that if K is a number field and G is K-isotropic, then C(S)(G) as a normal subgroup of ?(S) is almost generated by a single element.  相似文献   

8.
For any vertex x in a connected graph G of order n ≥ 2, a set S x ? V (G) is an x-detour monophonic set of G if each vertex vV (G) lies on an x-y detour monophonic path for some element y in S x . The minimum cardinality of an x-detour monophonic set of G is the x-detour monophonic number of G, denoted by dm x (G). A connected x-detour monophonic set of G is an x-detour monophonic set S x such that the subgraph induced by S x is connected. The minimum cardinality of a connected x-detour monophonic set of G is the connected x-detour monophonic number of G, denoted by cdm x (G). A connected x-detour monophonic set S x of G is called a minimal connected x-detour monophonic set if no proper subset of S x is a connected x-detour monophonic set. The upper connected x-detour monophonic number of G, denoted by cdm+ x (G), is defined to be the maximum cardinality of a minimal connected x-detour monophonic set of G. We determine bounds and exact values of these parameters for some special classes of graphs. We also prove that for positive integers r,d and k with 2 ≤ rd and k ≥ 2, there exists a connected graph G with monophonic radius r, monophonic diameter d and upper connected x-detour monophonic number k for some vertex x in G. Also, it is shown that for positive integers j,k,l and n with 2 ≤ jkln - 3, there exists a connected graph G of order n with dm x (G) = j,dm+ x (G) = k and cdm+ x (G) = l for some vertex x in G.  相似文献   

9.
The automorphism group of a class of nilpotent groups with infinite cyclic derived subgroups is determined. Let G be the direct product of a generalized extraspecial Z-group E and a free abelian group A with rank m, where E ={(1 kα_1 kα_2 ··· kα_nα_(n+1) 0 1 0 ··· 0 α_(n+2)...............000...1 α_(2n+1)000...01|αi∈ Z, i = 1, 2,..., 2 n + 1},where k is a positive integer. Let AutG G be the normal subgroup of Aut G consisting of all elements of Aut G which act trivially on the derived subgroup G of G, and AutG/ζ G,ζ GG be the normal subgroup of Aut G consisting of all central automorphisms of G which also act trivially on the center ζ G of G. Then(i) The extension 1→ Aut_(G') G→ AutG→ Aut(G')→ 1 is split.(ii) Aut_(G') G/Aut_(G/ζ G,ζ G)G≌Sp(2 n, Z) ×(GL(m, Z)■(Z~)m).(iii) Aut_(G/ζ G,ζ GG/Inn G)≌(Z_k)~(2n)⊕(Z)~(2nm).  相似文献   

10.
Analogues of Nunke’s theorem are proved which characterize variants of slenderness. For a bounded monotone subgroup M of ? ω , a torsion-free reduced abelian group G is M-slender if, and only if, there is no monomorphism from M into G. It is consistent relative to ordinary set theory (ZFC) that if M ≠ ? ω is an unbounded monotone subgroup of ? ω , then a torsion-free reduced abelian group G is M-slender if, and only if, there is no monomorphism from M into G.  相似文献   

11.
Let G be a graph and k ≥ 2 a positive integer. Let h: E(G) → [0, 1] be a function. If \(\sum\limits_{e \mathrel\backepsilon x} {h(e) = k} \) holds for each xV (G), then we call G[Fh] a fractional k-factor of G with indicator function h where Fh = {eE(G): h(e) > 0}. A graph G is fractional independent-set-deletable k-factor-critical (in short, fractional ID-k-factor-critical), if G ? I has a fractional k-factor for every independent set I of G. In this paper, we prove that if n ≥ 9k ? 14 and for any subset X ? V (G) we have
$${N_G}(X) = V(G)if|X| \geqslant \left\lfloor {\frac{{kn}}{{3k - 1}}} \right\rfloor ;or|{N_G}(X)| \geqslant \frac{{3k - 1}}{k}|X|if|X| < \left\lfloor {\frac{{kn}}{{3k - 1}}} \right\rfloor ,$$
then G is fractional ID-k-factor-critical.
  相似文献   

12.
Let g and h be arbitrary elements of a given finite group G. Then g and h are said to be autoconjugate if there exists some automorphism α of G such that h = gα. In this article, we construct some sharp bounds for the probability that two random elements of G are autoconjugate, denoted by \(\mathcal {P}_{a}(G)\). It is also shown that \(\mathcal {P}_{a}(G)|G|\) depends only on the autoisoclinism class of G.  相似文献   

13.
Let G be a graph, and g, f: V (G) → Z+ with g(x) ≤ f(x) for each xV (G). We say that G admits all fractional (g, f)-factors if G contains an fractional r-factor for every r: V (G) → Z+ with g(x) ≤ r(x) ≤ f(x) for any xV (G). Let H be a subgraph of G. We say that G has all fractional (g, f)-factors excluding H if for every r: V (G) → Z+ with g(x) ≤ r(x) ≤ f(x) for all xV (G), G has a fractional r-factor F h such that E(H) ∩ E(F h ) = θ, where h: E(G) → [0, 1] is a function. In this paper, we show a characterization for the existence of all fractional (g, f)-factors excluding H and obtain two sufficient conditions for a graph to have all fractional (g, f)-factors excluding H.  相似文献   

14.
For a finite group G and nonnegative integer n ≥ 0, one may consider the associated tower \(G \wr S_{n} := S_{n} \ltimes G^{n}\) of wreath product groups. Zelevinsky associated to such a tower the structure of a positive self-adjoint Hopf algebra (PSH-algebra) R(G) on the direct sum over integers n ≥ 0 of the Grothendieck groups K 0(R e p?G?S n ). In this paper, we study the interaction via induction and restriction of the PSH-algebras R(G) and R(H) associated to finite groups H ? G. A class of Hopf modules over PSH-algebras with a compatibility between the comultiplication and multiplication involving the Hopf k t h -power map arise naturally and are studied independently. We also give an explicit formula for the natural PSH-algebra morphisms R(H) → R(G) and R(G) → R(H) arising from induction and restriction. In an appendix, we consider a family of subgroups of wreath product groups analogous to the subgroups G(m, p, n) of the wreath product cyclotomic complex reflection groups G(m, 1, n).  相似文献   

15.
For a simple algebraic group G in characteristic p, a triple (a, b, c) of positive integers is said to be rigid for G if the dimensions of the subvarieties of G of elements of order dividing a, b, c sum to 2 dim G. In this paper we complete the proof of a conjecture of the third author, that for a rigid triple (a, b, c) for G with p > 0, the triangle group Ta,b,c has only finitely many simple images of the form G(pr). We also obtain further results on the more general form of the conjecture, where the images G(pr) can be arbitrary quasisimple groups of type G.  相似文献   

16.
It is proved that, if G is a finite group with a nontrivial normal 2-subgroup Q such that G/Q ~= A 7 and an element of order 5 from G acts freely on Q, then the extension G over Q is splittable, Q is an elementary abelian group, and Q is the direct product of minimal normal subgroups of G each of which is isomorphic, as a G/Q-module, to one of the two 4-dimensional irreducible GF(2)A 7-modules that are conjugate with respect to an outer automorphism of the group A 7.  相似文献   

17.
18.
The Bogomolov multiplier B 0(G) of a finite group G is defined as the subgroup of the Schur multiplier consisting of the cohomology classes vanishing after restriction to all abelian subgroups of G. The triviality of the Bogomolov multiplier is an obstruction to Noether’s problem. We show that if G is a central product of G 1 and G 2, regarding K i Z(G i ), i = 1, 2, and θ: G 1G 2 is a group homomorphism such that its restriction \(\theta {|_{{K_1}}}:{K_1} \to {K_2}\) is an isomorphism, then the triviality of B 0(G 1/K 1),B 0(G 1) and B 0(G 2) implies the triviality of B 0(G). We give a positive answer to Noether’s problem for all 2-generator p-groups of nilpotency class 2, and for one series of 4-generator p-groups of nilpotency class 2 (with the usual requirement for the roots of unity).  相似文献   

19.
We prove the following generalization of the classical Shephard–Todd–Chevalley Theorem. Let G be a finite group of graded algebra automorphisms of a skew polynomial ring \(A:=k_{p_{ij}}[x_1,\cdots,x_n]\). Then the fixed subring A G has finite global dimension if and only if G is generated by quasi-reflections. In this case the fixed subring A G is isomorphic to a skew polynomial ring with possibly different p ij ’s. A version of the theorem is proved also for abelian groups acting on general quantum polynomial rings.  相似文献   

20.
Let G be a group and ω(G) be the set of element orders of G. Let kω(G) and m k (G) be the number of elements of order k in G. Let nse(G) = {m k (G): kω(G)}. Assume r is a prime number and let G be a group such that nse(G) = nse(S r ), where S r is the symmetric group of degree r. In this paper we prove that G ? S r , if r divides the order of G and r 2 does not divide it. To get the conclusion we make use of some well-known results on the prime graphs of finite simple groups and their components.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号