首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The ignition process, mode of combustion and reaction front propagation in a partially premixed combustion (PPC) engine running with a primary reference fuel (87% iso-octane, 13% n-heptane by volume) is studied numerically in a large eddy simulation. Different combustion modes, ignition front propagation, premixed flame and non-premixed flame, are observed simultaneously. Displacement speed of CO iso-surface propagation describes the transition of premixed auto-ignition to non-premixed flame. High temporal resolution optical data of CH2O and chemiluminescence are compared with simulated results. A high speed ignition front is seen to expand through fuel-rich mixture and stabilize around stoichiometry in a non-premixed flame while lean premixed combustion occurs in the spray wake at a much slower pace. A good qualitative agreement of the distribution of chemiluminescence and CH2O formation and destruction shows that the simulation approach sufficiently captures the driving physics of mixed-mode combustion in PPC engines. The study shows that the transition from auto-ignition to flame occurs over a period of several crank angles and the reaction front propagation can be captured using the described model.  相似文献   

2.
The mixing, reaction progress, and flame front structures of partially premixed flames have been investigated in a gas turbine model combustor using different laser techniques comprising laser Doppler velocimetry for the characterization of the flow field, Raman scattering for simultaneous multi-species and temperature measurements, and planar laser-induced fluorescence of CH for the visualization of the reaction zones. Swirling CH4/air flames with Re numbers between 7500 and 60,000 have been studied to identify the influence of the turbulent flow field on the thermochemical state of the flames and the structures of the CH layers. Turbulence intensities and length scales, as well as the classification of these flames in regime diagrams of turbulent combustion, are addressed. The results indicate that the flames exhibit more characteristics of a diffusion flame (with connected flame zones) than of a uniformly premixed flame.  相似文献   

3.
The structure and stabilization mechanism of turbulent lifted non-premixed hydrocarbon flames have been investigated using combined laser imaging techniques. The techniques include Rayleigh scattering, laser induced predissociation fluorescence of OH, LIF of PAH, LIF of CH2O, and planar imaging velocimetry. The geometrical structure of multi-reaction zones and flow field at the stabilization region have been simultaneously measured in 16 hydrocarbon flames. The data reveal the existence of triple flame structure at the stabilization region of turbulent lifted flames. Increasing the jet velocity leads to an increase of the lift-off height and to a broadening of the lift-off region. Further analysis of the stabilization criterion at the lift-off height based on the premixed nature of triple-flame propagation and flow field data has been presented and discussed.  相似文献   

4.
5.
Various experiments were conducted to study the combustion characteristics of partially premixed methane enrichment of syngas by using the OH-PLIF technique. Experiments were conducted on a co-flow burner, and the methane concentration (XCH4 = CH4/(H2+CO+CH4)) was varied from 0 to 20%, the overall equivalence ratio was varied from 0.4 to 1.2 and the inner equivalence ratio was varied from 1.5 to 3.5. Kinetic simulation was conducted by using OPPDIF module of CHEMKIN-Pro software. Results show that an increase in XCH4 and ?overall weakens the OH signal intensity. Adding methane into the fuel greatly increases the height of the inner flame front, and the increase of methane concentration has a negative effect on flame propagation speed. Meanwhile, simulation results remain consistent with the experiments. The main OH radical production reaction changes from R46: H+HO2 = 2OH to R38: H+O2 = O+OH when methane concentration contained in the fuel mixture increases. Sensitivity analysis also indicates that reaction which plays a dominant effect on temperature changes with the increase of methane concentration.  相似文献   

6.
The requirements on high efficiency and low emissions of internal combustion engines (ICEs) raise the research focus on advanced combustion concepts, e.g., premixed-charge compression ignition (PCCI), partially premixed compression ignition (PPCI), reactivity controlled compression ignition (RCCI), partially premixed combustion (PPC), gasoline compression ignition (GCI) etc. In the present study, an optically accessible engine is operated in PPC mode, featuring compression ignition of a diluted, stratified charge of gasoline-like fuel injected directly into the cylinder. A high-speed, high-power burst-mode laser system in combination with a high-speed CMOS camera is employed for diagnostics of the autoignition process which is critical for the combustion phasing and efficiency of the engine. To the authors’ best knowledge, this work demonstrates for the first time the application of the burst-system for simultaneous fuel tracer planar laser induced fluorescence (PLIF) and chemiluminescence imaging in an optical engine, at 36?kHz repetition rate. In addition, high-speed formaldehyde PLIF and chemiluminescence imaging are employed for investigation of autoignition events with a high temporal resolution (5 frames/CAD). The development of autoignition together with fuel or CH2O distribution are simultaneously visualized using a large number of consecutive images. Prior to the onset of combustion the majority of both fuel and CH2O are located in the recirculation zone, where the first autoignition also occurs. The ability to record, in excess of 100 PLIF images, in a single cycle brings unique possibilities to follow the in-cylinder processes without the averaging effects caused by cycle-to-cycle variations.  相似文献   

7.
We report on the development of planar laser-induced fluorescence (PLIF) for CH imaging with improved detection sensitivity for single-shot investigations of turbulent, lean, premixed flames. A ring-cavity, pulsed Alexandrite laser was frequency-doubled to excite the lines in the R-branch band-head of the B-X (0,0) band and broadband fluorescence from the B-X (0,1), A-X (1,1) and (0,0) bands, overlapping in the spectral range around 431 nm, was collected. The employed Alexandrite laser, which is characterized by its long pulse duration (150 ns), gives a tunable laser beam around 775 nm with a pulse energy for the second harmonic at the CH absorption wavelength of about 70 mJ. Moreover, the laser has the possibility to be operated in narrow bandwidth (100 MHz) or broad bandwidth (8 cm−1). An introductory high resolution excitation scan over the R-branch band-head was performed and, in addition, saturated excitation with the broadband option of the laser was investigated. By simultaneous excitation of several rotational transitions and to bring these transitions close to saturation, high signal-to-noise ratios were reached over a wide range of equivalence ratios. A sharp and thin CH layer was observed in single-shot PLIF images from laminar premixed methane/air flames from Φ = 0.6 to Φ = 1.5. Finally, the impact of the developed CH PLIF technique is demonstrated in a highly turbulent, lean, partially premixed methane/air flame established on a co-axial jet flame burner.  相似文献   

8.
This study characterizes the structure and dynamics of a confined, bluff-body-stabilized turbulent premixed flame by simultaneously employing formaldehyde (CH2O) and hydroxyl (OH) planar laser-induced fluorescence (PLIF) and particle image velocimetry (PIV), at a rate of 10?kHz. The large field-of-view (>170 cm2) CH2O-PLIF is enabled by use of a burst-mode laser delivering 10-kHz pulse trains of 355-nm at 350 mJ/pulse, resulting in a CH2O signal-to-noise of 47:1 during PIV seed flow. Two cases illustrative of the CH2O dynamics are presented. A statistically stationary turbulent combustion case highlights the development of the CH2O layers in space and time. Notably, presumed CH2O-vortex dynamic interactions are observed where the CH2O accumulates broadly near the Kelvin–Helmholtz vortex core and remains thin near the vortex braid, contributing to a distribution of CH2O preheat zone thickness from 1 to 10 times of the calculated laminar value. The second case highlights the CH2O dynamics during a self-excited combustion instability. Two short-duration increases in CH2O are produced during the elevated velocity portion of the acoustic cycle. The first CH2O increase is caused by the reactant mass flux impulse as the velocity starts to increase. The second CH2O increase is the result of the upper and lower shear layers merging downstream and entraining fresh reactants that burn in intense, distributed regions inside the wake. Estimating the time delay between the CH2O and the heat release, it is suggested that the secondary CH2O increase may contribute to damping of the acoustic instability, because of its out-of-phase relationship with pressure, while the first CH2O increase appears to drive the instability.  相似文献   

9.
The combination of two-dimensional, planar laser-induced fluorescence (PLIF) and cavity ring-down (CRD) absorption spectroscopy is applied to map quantitatively the spatial distributions of CH2O and CH in a methane/air flame at 25 Torr. Both species are detected in the same spectral region using the overlapping CH2O A 1 A 2 -X 1 A 1 41 0 and CH B-X(1,0 )bands. The combination of diagnostic techniques exploits the spatial resolution of LIF and the quantitative CRD absorption measure of column density. The spatially resolved PLIF provides the distribution of absorbers and line-of-sight CRD absorption the absolute number density needed for quantitative concentration images. The peak CH2O concentration is (3.5±1.4 )×1014 cm-3, or 1450±550 ppm at 1000 K. The lack of precise absorption cross-section data produces these large error limits. Although a flame model predicts lower amounts, these large uncertainties limit this measurement’susefulness as a test of the flame chemistry. Received: 24 April 2001 / Revised version: 10 July 2001 / Published online: 10 October 2001  相似文献   

10.
The CH radical is frequently used as a flame marker because it is relatively short-lived and is present over a narrow region in flames. Discontinuities in the CH field are thus often interpreted as localized extinction of the flame. Recently, however, the adequacy of CH laser-induced fluorescence (LIF) as a flame marker was questioned by an experimental study of flame–vortex interactions in highly N2-diluted premixed methane flames. We demonstrate both experimentally and numerically that anomalies in the transient response of CH in this earlier study were due to reactant composition variations in the vortex. In addition, we evaluate the adequacy of CH LIF as a flame marker over a much broader range of conditions. Previous numerical studies showed that heat release rate correlates reasonably well with peak [HCO] and the concentration product [OH][CH2O], but poorly with [CH], in highly N2-diluted premixed methane flames. Here, the correlation between heat release rate and CH is investigated both experimentally, by performing simultaneous measurements of CH, OH, and CH2O LIF, and numerically. We consider undiluted and N2-diluted premixed methane flames over a range of strain rates and stoichiometries. Results are reported for flames subjected to unsteady stretch and reactant composition variations. For all N2-dilution levels considered, the peak CH LIF signal correlates poorly with heat release rate when the stoichiometry of the reactant mixture changes from rich to lean. However, when flames are subjected to stretch, the correlation between CH and heat release rate improves as the N2-dilution level decreases. The correlation is reasonably good for undiluted flames with equivalence ratios of 0.8 < Φ < 1.2. This result is particularly encouraging, given the relevance of undiluted flames to practical applications, and it motivates further investigation of the parameter space for which difficulties may exist in using CH as a flame marker.  相似文献   

11.
An effective partially premixed flamelet model for large eddy simulation (LES) of turbulent spray combustion is formulated. Different flame regimes are identified with a flame index defined by budget terms in a 2-D multi-phase flamelet formulation, and the application in LES of partially pre-vaporized spray flames shows a favorable agreement with experiments. Simulations demonstrate that, compared to the conventional single-regime flamelets, the present partially premixed flamelet formulation shows its ability in capturing the subgrid regime transitions, yielding a well prediction of peak gas temperature and the downstream flame spreading. A propagating premixed flame front is found coupled with a trailing diffusion burning through the spray evaporation, and the spray effect on regime discrimination is manifested with transport budget analysis. A two-phase regime indicator is then proposed, by which the evaporation-dictated regime is properly described. Its intended use will rely on both gas and spray flamelet structures.  相似文献   

12.
Data from a recent instantaneous, simultaneous, high-resolution imaging experiment of Rayleigh temperature and laser induced fluorescence (LIF) of OH and CH2O at the base of a turbulent lifted methane flame issuing into a hot vitiated coflow are analysed and contrasted to reference flames to further investigate the stabilization mechanisms involved. The use of the product of the quantified OH and semi-quantified CH2O images as a marker for heat release rate is validated for transient autoigniting laminar flames. This is combined with temperature gradient information to investigate the flame structure. Super-equilibrium OH, the nature of the profiles of heat release rate with respect to OH mole fraction, and comparatively high peak heat release rates at low temperature gradients is found in the kernel structures at the flame base, and found to be indicative of autoignition stabilization.  相似文献   

13.
A possible modelling approach in the large eddy simulation (LES) of reactive flows is to deconvolve resolved scalars. Indeed, by inverting the LES filter, scalars such as mass fractions are reconstructed. This information can be used to close budget terms of filtered species balance equations, such as the filtered reaction rate. Being ill-posed in the mathematical sense, the problem is very sensitive to any numerical perturbation. The objective of the present study is to assess the ability of this kind of methodology to capture the chemical structure of premixed flames. For that purpose, three deconvolution methods are tested on a one-dimensional filtered laminar premixed flame configuration: the approximate deconvolution method based on Van Cittert iterative deconvolution, a Taylor decomposition-based method, and the regularised deconvolution method based on the minimisation of a quadratic criterion. These methods are then extended to the reconstruction of subgrid scale profiles. Two methodologies are proposed: the first one relies on subgrid scale interpolation of deconvolved profiles and the second uses parametric functions to describe small scales. Conducted tests analyse the ability of the method to capture the chemical filtered flame structure and front propagation speed. Results show that the deconvolution model should include information about small scales in order to regularise the filter inversion. a priori and a posteriori tests showed that the filtered flame propagation speed and structure cannot be captured if the filter size is too large.  相似文献   

14.
A 1.5 m long turbulent-wake combustion vessel with a 0.15 m × 0.15 m cross-sectional area is proposed for spatiotemporal measurements of curvature, strain, dilatation and burning rates along a freely downward-propagating premixed flame interacting with a parallel row of staggered vortex pairs having both compression (negative) and extension (positive) strains simultaneously. The wanted wake is generated by rapidly withdrawing an electrically-controlled, horizontally-oriented sliding plate of 5 mm thickness for flame–wake interactions. Both rich and lean CH4/air flames at the equivalence ratios  = 1.4 and  = 0.7 with nearly the same laminar burning velocity are studied, where flame–wake interactions and their time-dependent velocity fields are obtained by high-speed, high-resolution DPIV and laser-tomography. Correlations among curvature, strain, stretch, and dilatation rates along wrinkled flame fronts at different times are measured and thus their influences on front propagation rates can be analyzed. It is found that strain-related effects have significant influence on front propagation rates of rich CH4/air (diffusionally stable) flames even when the curvature weights more in the total stretch than the strain rate does. The local propagation rates along the wrinkled flame front are more intense at negative strain rates corresponding to positive peak dilatation rates but the global propagation rate averaged along the rich flame front remains constant during all period of flame–wake interaction. For lean CH4/air (diffusionally unstable) flames, the curvature becomes a dominant parameter influencing the structure and propagation of the wrinkled flame front, where both local and global propagation rates increase significantly with time, showing unsteady flame propagation. These experimental results suggest that the theory of laminar flame stretch can be applicable to a more complex flame–wake interaction involving unsteadiness and multitudinous interactions between vortices.  相似文献   

15.
A Large Eddy Simulation (LES) model capable of accurately representing finite-rate chemistry effects in turbulent premixed combustion is presented. The LES computations use finite-rate chemistry and implicit LES combustion modelling to simulate an experimentally well-documented lean-premixed jet flame stabilized by a stoichiometric pilot. The validity of the implicit LES assumption is discussed and criteria are expressed in terms of subgrid scale Damköhler and Karlovitz numbers. Simulation results are compared to experimental data for velocity, temperature and species mass fractions of CH4, CO and OH. The simulation results highlight the validity and capability of the present approach for the flame and in general the combustion regime examined. A sensitivity analysis to the choice of the finite-rate chemistry mechanism is reported, this analysis indicates that the one and two-step global reaction mechanisms evaluated fail to capture the reaction layer with sufficient accuracy, while a 20-species skeletal mechanism reproduces the experimental observations accurately including the key finite-rate chemistry indicators CO and OH. The LES results are shown to be grid insensitive and that the grid resolution within the bounds examined is far less important compared to the sensitivity of the finite-rate chemistry representation. The results are analyzed in terms of the flame dynamics and it is shown that intense small scale mixing (high Karlovitz number) between the pilot and the jet is an important mechanism for the stabilization of the flame.  相似文献   

16.

This paper presents a numerical study of auto-ignition in simple jets of a hydrogen–nitrogen mixture issuing into a vitiated co-flowing stream. The stabilization region of these flames is complex and, depending on the flow conditions, may undergo a transition from auto-ignition to premixed flame propagation. The objective of this paper is to develop numerical indicators for identifying such behavior, first in well-known simple test cases and then in the lifted turbulent flames. The calculations employ a composition probability density function (PDF) approach coupled to the commercial CFD code, FLUENT. The in-situ-adaptive tabulation (ISAT) method is used to implement detailed chemical kinetics. A simple k–ε turbulence model is used for turbulence along with a low Reynolds number model close to the solid walls of the fuel pipe.

The first indicator is based on an analysis of the species transport with respect to the budget of convection, diffusion and chemical reaction terms. This is a powerful tool for investigating aspects of turbulent combustion that would otherwise be prohibitive or impossible to examine experimentally. Reaction balanced by convection with minimal axial diffusion is taken as an indicator of auto-ignition while a diffusive–reactive balance, preceded by a convective–diffusive balanced pre-heat zone, is representative of a premixed flame. The second indicator is the relative location of the onset of creation of certain radical species such as HO2 ahead of the flame zone. The buildup of HO2 prior to the creation of H, O and OH is taken as another indicator of autoignition.

The paper first confirms the relevance of these indicators with respect to two simple test cases representing clear auto-ignition and premixed flame propagation. Three turbulent lifted flames are then investigated and the presence of auto-ignition is identified. These numerical tools are essential in providing valuable insights into the stabilization behaviour of these flames, and the demarcation between processes of auto-ignition and premixed flame propagation.  相似文献   

17.
A premixed H2/air flame with N2 dilution (Uin = 533 cm/s, ? = 1) was formed in a quartz micro flow reactor with/without a 100-nm thick Inconel coating for the investigation of wall chemical effect of the metal surface. Two-dimensional distributions of OH radical, O atom and H atom in the hydrogen flame were measured via the planar laser induced fluorescence (PLIF) and two-photon absorption laser induced fluorescence (TALIF), respectively. It is found that the distributions of all these three main species in the hydrogen flame are significantly affected by the wall chemical effect. OH, O and H shift downstream in the Inconel-coated channel, and also their concentration becomes lower than those in the less-reactive quartz channel. Based on the measured distributions of OH, O and H over the Inconel surface, the initial sticking coefficients (S0) of the radical quenching model are optimized. It is found that S0 for Inconel are 0.4–0.5, 0.1–0.2 and < 0.05 for OH, O and H, respectively, showing different sticking coefficients for different species for the first time.  相似文献   

18.
平面激光诱导荧光实验中激励激光的光束整形   总被引:1,自引:0,他引:1  
分析了激励激光光强分布对平面激光诱导荧光(PLIF)实验中荧光强度的影响。基于柱面微透镜列阵设计了一套激光片状光束匀滑整形系统,并根据PLIF实验的具体要求,通过光线追迹方法优化了系统参数。建立了片状光束整形实验系统,对染料激光进行了匀滑整形,获得了不均匀性〈4%的均匀片状光束,满足了PLIF实验所需。在此基础上建立了PLIF实验系统,获得了酒精灯火焰和CH4/air预混火焰中OH的二维荧光分布。  相似文献   

19.
Micro direct-injection (DI) strategy is often used to extend the operation range of the reactivity controlled compression ignition (RCCI) to high engine load, but its combustion process has not been well understood. In this study, the ignition and flame development of the micro-DI RCCI strategy were investigated on a light-duty optical engine using formaldehyde planar laser-induced fluorescence (PLIF) and high-speed natural flame luminosity imaging techniques. The premixed fuel was iso-octane and an oxygenated fuel of polyoxymethylene dimethyl ethers (PODE) was employed for DI. The fuel-air equivalence ratio of DI was kept at 0.09 and the premixed equivalence ratio was varied from 0 to 1. RCCI strategies with early and late DI timing at –25° and –5° crank angle after top dead center were studied, respectively. Results indicate that the early micro-DI RCCI features a single-stage high-temperature heat release (HTHR). The combustion in the low-reactivity region shows a combination of flame front propagation and auto-ignition. The late micro-DI RCCI presents a two-stage HTHR. The second-stage HTHR is owing to the combustion in the low-reactivity region that is dominated by flame front propagation when the premixed equivalence ratio approaches 1. For both early and late micro-DI RCCI, the intermediate-temperature heat release (ITHR) of iso-octane, indicated by formaldehyde, takes place in the low-reactivity region before the arrival of the flame front. This is quite different from the flame front propagation in spark-ignition (SI) engine that shows no ITHR in the unburned region. The DI fuel mass is a key factor that affects the combustion in the low-reactivity region. If the DI fuel mass is quite low, there is more possibility of flame front propagation; otherwise, sequential auto-ignition dominates. The emergence of the flame front propagation in micro-DI RCCI strategy reduces its combustion rate and peak pressure rise rate.  相似文献   

20.
The effects of curvature and wrinkling on the growth of turbulent premixed flame kernels have been investigated using both 2D OH planar laser-induced fluorescence (PLIF) and 3D direct numerical simulation (DNS). Comparisons of results between the two approaches show a high level of agreement, providing confidence in the simplified chemistry treatment employed in the DNS, and indicating that chemistry may have only a limited influence on the evolution of the freely propagating flame. This is in contrast to previous studies of the very early flame development where chemistry may be dominant. Statistics for curvature and wrinkling are presented in the form of probability density functions, and there is good agreement with previous findings. The limitations of 2D PLIF measurements of curvature are quantified by comparison with full 3D information obtained from the DNS. The usefulness of PLIF in providing data over a wide parameter range is illustrated using statistics obtained from both CH4/air and H2/air mixtures, which show a markedly different behaviour due to their different thermo-diffusive properties. The results provide a demonstration of the combined power of PLIF and DNS for flame investigation. Each technique is shown to compensate for the weaknesses of the other and to reinforce the strengths of both.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号