首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Hydrogenated silicon (Si:H) thin films were obtained by plasma‐enhanced chemical vapor deposition (PECVD). Raman spectroscopy was used to investigate the structural evolution in phosphor‐doped n‐type amorphous hydrogenated silicon thin films, which were prepared under different substrate temperatures and gas pressures. Meanwhile, the effect of nitrogen doping on the structure of P‐doped thin films was also investigated by Raman spectroscopy. Moreover, the transition from the amorphous state to the nanocrystalline state of undoped Si:H films deposited through low argon dilution was studied by Raman spectroscopy, X‐ray diffraction, and transmission electron microscopy. The results show that Raman spectroscopy can sensitively detect the structural evolution in hydrogenated silicon thin films deposited under different conditions in a PECVD system. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

2.
In this work, hydrogen plasma etching of surface oxides was successfully accomplished on thin (~100 µm) planar n‐type Czochralski silicon wafers prior to intrinsic hydrogenated amorphous silicon [a‐Si:H(i)] deposition for heterojunction solar cells, using an industrial inductively coupled plasma‐enhanced chemical vapour deposition (ICPECVD) platform. The plasma etching process is intended as a dry alternative to the conventional wet‐chemical hydrofluoric acid (HF) dip for solar cell processing. After symmetrical deposition of an a‐Si:H(i) passivation layer, high effective carrier lifetimes of up to 3.7 ms are obtained, which are equivalent to effective surface recombination velocities of 1.3 cm s–1 and an implied open‐circuit voltage (Voc) of 741 mV. The passivation quality is excellent and comparable to other high quality a‐Si:H(i) passivation. High‐resolution transmission electron microscopy shows evidence of plasma‐silicon interactions and a sub‐nanometre interfacial layer. Using electron energy‐loss spectroscopy, this layer is further investigated and confirmed to be hydrogenated suboxide layers. (© 2015 WILEY‐VCH Verlag GmbH &Co. KGaA, Weinheim)  相似文献   

3.
We present PECVD deposition of i‐a‐Si:H in an in‐line configuration for the fabrication of silicon heterojunction solar cells. For industry, in‐line processing has the potential to increase production throughput and yield. We compared batch and in‐line fabrication of i‐a‐Si:H passivation samples with identical plasma conditions and observed that the a‐Si:H material properties do not significantly differ. In batch‐type production the substrate is in the plasma zone at the moment of ignition, whereas for in‐line deposition the substrate is introduced into the plasma zone when steady plasma conditions have been reached. Our preliminary results show that there are depositions conditions that result both for in‐line and batch‐type deposition in good i‐a‐Si:H passivation layers. Therefore both methods can equally well be considered for the production of silicon heterojunction solar cells. (© 2016 WILEY‐VCH Verlag GmbH &Co. KGaA, Weinheim)  相似文献   

4.
A parametric study of post‐deposition hydrogen plasma treatment of intrinsic a:Si:H films is performed. We demonstrate a significant improvement in passivation of c‐Si(100) promoting epitaxy after an in‐situ hydrogen plasma treatment depending mainly on the pressure and slightly on the power. Plasma diagnostic indicates an increase of Hα* signal with high power and low pressure. However, our analysis reveals a better hydrogen incorporation with high pressure and a slight increase in monohydride with high power. Longer H2 plasma duration up to 50 s shows no detrimental effect on the passivation quality. Optimizing the in‐situ H2 plasma treatment, high minority carrier lifetime over 15 ms was achieved after short thermal annealing. (© 2015 WILEY‐VCH Verlag GmbH &Co. KGaA, Weinheim)  相似文献   

5.
The intentional addition of hydrogen during reactive sputtering of AlOx films has led to a dramatic improvement of the surface passivation of crystalline silicon wafers achieved with this technique. The 5 ms effective minority carrier lifetime measured on 1.5 Ω cm n‐type CZ silicon wafers is close to the 6 ms of a control wafer coated by atomic layer deposition (ALD) of AlOx. Hydrogen‐sputtered films also provide excellent passivation of 1 Ω cm p‐type silicon, as demonstrated by an effective lifetime of 1.1 ms. It is likely that the improved passivation is related to the formation of an interfacial silicon oxide layer, as indicated by FTIR measurements. (© 2013 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

6.
利用x射线小角散射技术研究微晶硅薄膜的微结构   总被引:1,自引:0,他引:1       下载免费PDF全文
采用x射线小角散射(SAXS)技术研究了由射频等离子体增强化学气相沉积(rf-PECVD)、 热丝化学气相沉积(HWCVD)和等离子体助热丝化学气相沉积(PE-HWCVD)技术制备的微晶硅( μc-Si:H)薄膜的微结构.实验发现,在相同晶态比的情况下,PECVD沉积的μc-Si:H薄膜微 空洞体积比小,结构较致密,HWCVD沉积的μ-Si:H薄膜微空洞体积比大,结构较为疏松,PE -HWCVD沉积的μc-Si:H薄膜,由于等离子体的敲打作用,与HWCVD样品相比,微结构得到明 显改善.采用HWCVD二步法和PE-HWCVD加适量Ar离子分别沉积μc-Si:H薄膜,实验表明,微结 构参数得到了进一步改善.45°倾角的SAXS测量显示,不同方法制备的μc-Si:H薄膜中微空 洞分布都呈各向异性.红外光谱测量也证实了SAXS的结果. 关键词: 微晶硅薄膜 微结构 微空洞 x射线小角散射  相似文献   

7.
雷青松  吴志猛  耿新华  赵颖  孙健  奚建平 《中国物理》2006,15(12):3033-3038
Hydrogenated silicon (Si:H) thin films for application in solar cells were deposited by using very high frequency plasma enhanced chemical vapour deposition (VHF PECVD) at a substrate temperature of about 170℃. The electrical, structural, and optical properties of the films were investigated. The deposited films were then applied as i-layers for p-i-n single junction solar cells. The current--voltage (I-V) characteristics of the cells were measured before and after the light soaking. The results suggest that the films deposited near the transition region have an optimum properties for application in solar cells. The cell with an i-layer prepared near the transition region shows the best stable performance.  相似文献   

8.
Amorphous hydrogenated silicon carbonitride thin films (a-Si:C:N:H), deposited by plasma enhanced chemical vapour deposition (PECVD) using hexamethyldisilazane (HMDSN) as monomer and Ar as feed gas, have been investigated for their structural and optical properties as a function of the deposition RF plasma power, in the range of 100-300 W. The films have been analysed by Fourier transform infrared spectroscopy (FT-IR), X-ray photoelectron spectroscopy (XPS), UV-vis-NIR spectrophotometry and atomic force microscopy (AFM). From the analysis of the FT-IR spectra it results that the films become more amorphous and inorganic as RF plasma power increases. The incorporation of oxygen in the deposited layers, mainly due to the atmospheric attack, has been evaluated by XPS and FT-IR spectroscopy. Reflectance/transmittance spectra, acquired in the range of 200-2500 nm, allow to descrive the film absorption edge for interband transitions. A relationship between the optical energy band gap, deduced from the absorption coefficient curve, and the deposition RF plasma power has been investigated. The reduction of the optical energy gap from 3.85 to 3.69 eV and the broadening of the optical absorption tail with RF plasma power increasing from 100 to 300 W are ascribed to the growth of structural disorder, while the increase of the refractive index, evaluated at 630 nm, is attributed to a slight densification of the film. The AFM analysis confirms the amorphous character of the films and shows how the deposited layers become rougher when RF plasma power increases. The wettability of the film has been studied and related to the chemical composition and to the morphology of the deposited layers.  相似文献   

9.
Hydrogenated amorphous silicon nitride films have been deposited by the rf magnetron sputtering method with non-stoichiometric and stoichiometric compositions using a poly-Si target and a mixture of Ar, H2 and N2 as the sputtering gas. Data on optical and infrared absorption, electrical conductivity, breakdown voltage, capacitance measurements and thermal evolution of hydrogen have been presented as a function of nitrogen concentration in the films, especially in the stoichiometric region of composition. Attempts have been made to identify the roles of hydrogen and nitrogen in determining the electrical and optical properties and thermal stability exhibited by the films. Properties relevant for device application of the material have been shown to be comparable to those obtained by glow discharge or electron cyclotron resonance plasma chemical vapour deposition methods of deposition. RF magnetron sputtering has therefore been suggested as a viable alternative to the more widely adopted CVD methods for device applications of silicon nitride, where the use of hazardous process gases can be avoided.  相似文献   

10.
Hydrogenated silicon (Si:H) film was grown by radio frequency plasma enhanced chemical vapor deposition (PECVD) method. The transition between hydrogenated amorphous silicon (a-Si:H) and hydrogenated microcrystalline silicon (μc-Si:H) was characterized by X-ray diffraction analysis. A semiconductor system was used to measure low frequency noise (1/f noise) and random telegraph switching noise of Si:H films. The results show that the 1/f noise of μc-Si:H is 4 orders of magnitude lower than that of a-Si:H and no RTS noise was found in both films. It also shows that using μc-Si:H instead of a-Si:H film as a sensing layer will enable the development of high performance uncooled microbolometer.  相似文献   

11.
In this work we present a detailed structural of a series of B-doped hydrogenated microcrystalline silicon (μc-Si:H) films deposited by plasma-enhanced chemical vapor deposition (PECVD) and B-doped polycrystalline silicon (poly-Si) films produced by step-by-step laser crystallization process from amorphous silicon. The influence of doping on the structural properties and structural changes during the sequential crystallization processes were monitored by Raman spectroscopy. Unlike μc-Si:H films, that consist of a two-phase mixture of amorphous and ordered Si, partially crystallized sample shows a stratified structure with polycrystalline silicon layer at the top of an amorphous layer. With increasing doping concentration the LO-TO phonon line in poly-Si shift to smaller wave numbers and broadens asymmetrically. The results are discussed in terms of resonant interaction between optical phonons and direct intraband transitions known as a Fano resonance. In μc-Si:H films, on the other hand, the Fano effect is not observed. The increase of doping in μc-Si:H films suppressed the crystalline volume fraction, which leads to an amorphization in the film structure. The structural variation in both μc-Si:H and poly-Si films leads to a change in hydrogen bonding configuration.  相似文献   

12.
In recent years, excellent surface passivation has been achieved on both p‐type and n‐type surfaces of silicon wafers and solar cells using aluminum oxide deposited by plasma‐assisted atomic layer deposition. However, alternative deposition methods may offer practical advantages for large‐scale manufacturing of solar cells. In this letter we show that radio‐frequency magnetron sputtering is capable of depositing negatively‐charged aluminum oxide and achieving good surface passivation both on p‐type and n‐type silicon wafers. We thus establish that sputtered aluminum oxide is a very promising method for the surface passivation of high efficiency solar cells. (© 2009 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

13.
The low thermal stability of hydrogenated amorphous silicon (a‐Si:H) thin films limits their widespread use for surface passivation of c‐Si wafers on the rear side of solar cells. We show that the thermal stability of a‐Si:H surface passivation is increased significantly by a hydrogen rich a‐Si:H bulk, which acts as a hydrogen reservoir for the a‐Si:H/c‐Si interface. Based on this mechanism, an excellent lifetime of 5.1 ms (at injection level of 1015 cm–3) is achieved after annealing at 450 °C for 10 min. (© 2010 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

14.
We report results obtained from FTIR and TEM measurements carried out on silicon thin films deposited by plasma-enhanced chemical vapor deposition (PECVD) from silane diluted with hydrogen. The hydrogen content, the microstructure factor, the mass density and the volume per Si-H vibrating dipoles were determined as a function of the hydrogen dilution. Hydrogen dilution of silane results in an inhomogeneous growth during which the material evolves from amorphous hydrogenated silicon (a-Si:H) to microcrystalline hydrogenated silicon (μc-Si:H). With increasing dilution the transition from amorphous to microcrystalline phase appears faster and the average mass density of the films decreases. The μc-Si:H films are mixed-phase void-rich materials with changing triphasic volume fractions of crystalline and amorphous phases and voids. Different bonding configurations of vibrating Si-H dipoles were observed in the a-Si:H and μc-Si:H. The bonding of hydrogen to silicon in the void- and vacancy-dominated mechanisms of network formation is discussed.  相似文献   

15.
采用等离子体增强化学气相沉积技术,以N2掺入到SiH4和H2的沉积方式,分别在玻璃和N型单晶硅片(100)衬底上制备富硅氮化硅薄膜。通过紫外-可见光吸收光谱、傅里叶变换红外吸收光谱(FTIR光谱)、拉曼光谱和光致发光谱(PL谱)分别表征掺氮硅薄膜材料的带隙、结构及其发光特性的变化。结果表明:在氢气的氛围中,随着氮气流量的增加,氢原子能够对薄膜缺陷起到抑制作用,并使较低的SiH4/N2流量比下呈现富硅态,但却不利于硅团簇的形成。随着氮原子的掺入,Si—N键的含量增大,带隙增大,薄膜内微结构的无序度也增大,薄膜出现了硅与氮缺陷相关的缺陷态发光;随着氮原子进一步增加,出现了带尾态发光,进一步讨论了发光与结构之间的关联。这些结果有助于采用PECVD制备富硅氮化硅对材料发光与结构特性的优化。  相似文献   

16.
Characteristics of silicon nitride (SiNx:H) films, grown by plasma enhanced chemical vapor deposition (PECVD) on various metals such as Ta, IrMn, NiFe, Cu, and CoFe at various temperatures down to 100 °C, were studied using measurements of BHF etch rate, surface roughness and Auger electron spectroscopy (AES). The results were compared with those obtained for SiNx:H films on Si. The deposition rate of SiNx:H films increased slightly as deposition temperature decreased, and showed a weak dependence on the underlying materials. The surface of the nitride films deposited on all underlying materials at lower temperatures (below 150 °C) became rougher. In particular, a bubble-like surface was observed on the nitride film deposited on NiFe at 100 °C. At higher deposition temperatures (above 200 °C), SiNx:H films on all the above metals had small RMS values, except for films on Cu which cracked at 250 °C. BHF (10:1) etch rate increased dramatically for nitride films deposited below 150 °C. For different underlying films, the BHF etch rate was quite different, but exhibited the same trend with decrease in deposition temperature. AES measurements showed that Si and N concentrations in the SiNx:H films were only slightly different for the various deposition temperatures and underlying materials. AES depth profile of nitride films indicated that both surface O content and the depth of oxygen penetrating into SiNx:H increased for low temperature-deposited films. However, there was no observed oxygen signal from within the films, even for films deposited at 100 °C, and both Si and N concentrations were uniform throughout the film. Received: 26 October 2001 / Accepted: 2 March 2001 / Published online: 20 June 2001  相似文献   

17.
Silicon rich silicon oxide films have been deposited by plasma enhanced chemical vapour deposition using a gas mixture of silane, carbon-di-oxide and hydrogen. Silicon nanocrystals formations in the as deposited silicon rich silicon oxide films have been detected by high resolution transmission electron microscopy, scanning electron microscopy, Raman scattering and X-ray diffraction studies. Structural changes under different deposition condition have been studied by Fourier transform infrared spectroscopy. The oxygen and hydrogen bonding configurations have been obtained from Fourier transform infrared spectroscopy. Room temperature photoluminescence spectra have been observed for the as deposited films. The structural properties together with photoluminescence spectra allowed us to gain insight about the Si nanocrystal formation.  相似文献   

18.
吴晨阳  谷锦华  冯亚阳  薛源  卢景霄 《物理学报》2012,61(15):157803-157803
本文采用射频等离子体增强化学气相沉积(rf-PECVD)技术在单晶硅衬底上沉积了两个系列的硅薄膜. 通过对样品进行固定角度椭圆偏振测试, 结果表明第一个系列硅薄膜为非晶硅, 形成了突变的a-Si:H/c-Si异质结构, 此结构在HIT电池中有利于形成好的界面特性, 对于非晶硅薄膜采用通常的Tauc-Lorentz摇摆模型(Genosc)拟合结果很好; 第二个系列硅薄膜为外延硅, 对于外延硅薄膜, 随着膜厚增加晶化率降低, 当外延硅薄膜厚度为46 nm时开始非晶硅生长. 对于外延硅通常采用EMA模型(即将硅薄膜体层看成由非晶硅和c-Si构成的混合层)拟合结果较好, 当硅薄膜中出现非晶硅生长时, 将体层分成混合层和非晶硅两层, 采用三层模型拟合结果很好. 本文证实了椭偏光谱分析采用不同的模型可对单晶硅衬底上不同结构的硅薄膜进行有效表征.  相似文献   

19.
Based on the surface passivation of n-type silicon in a silicon drift detector(SDD), we propose a new passivation structure of SiO2/Al2O3/SiO2 passivation stacks. Since the SiO2 formed by the nitric-acid-oxidation-of-silicon(NAOS)method has good compactness and simple process, the first layer film is formed by the NAOS method. The Al2O3 film is also introduced into the passivation stacks owing to exceptional advantages such as good interface characteristic and simple process. In addition, for requirements of thickness and deposition temperature, the third layer of the SiO2 film is deposited by plasma enhanced chemical vapor deposition(PECVD). The deposition of the SiO2 film by PECVD is a low-temperature process and has a high deposition rate, which causes little damage to the device and makes the SiO2 film very suitable for serving as the third passivation layer. The passivation approach of stacks can saturate dangling bonds at the interface between stacks and the silicon substrate, and provide positive charge to optimize the field passivation of the n-type substrate.The passivation method ultimately achieves a good combination of chemical and field passivations. Experimental results show that with the passivation structure of SiO2/Al2O3/SiO2, the final minority carrier lifetime reaches 5223 μs at injection of 5×1015 cm-3. When it is applied to the passivation of SDD, the leakage current is reduced to the order of nA.  相似文献   

20.
陈剑辉  杨静  沈艳娇  李锋  陈静伟  刘海旭  许颖  麦耀华 《物理学报》2015,64(19):198801-198801
在本征氢化非晶硅(a-Si:H(i))/晶体硅(c-Si)/a-Si:H(i)异质结构上溅射ITO时, 发现后退火可大幅增加ITO/a-Si:H(i)/c-Si/a-Si:H(i)的少子寿命(从1.7 ms到4 ms). 这一增强效应可能的三个原因是: ITO/a-Si:H(i)界面场效应作用、退火形成的表面反应层影响以及退火对a-Si:H(i)材料本身的优化, 但本文研究结果表明少子寿命增强效应与ITO和表面反应层无关; 对不同沉积温度制备的a-Si:H(i)/c-Si/a-Si:H(i)异质结后退火的研究表明: 较低的沉积温度(<175 ℃)后退火增强效应显著, 而较高的沉积温度(>200 ℃)后退火增强效应不明显, 可以确定“低温长高温后退火”是获得高质量钝化效果的一种有效方式; 采用傅里叶红外吸收谱(FTIR)研究不同沉积温度退火前后a-Si:H(i)材料本身的化学键构造, 发现退火后异质结少子寿命大幅提升是由于a-Si:H(i)材料本身的结构优化造成的, 其深层次的本质是通过材料的生长温度和退火温度的优化匹配来控制包括H含量、H键合情况以及Si原子无序性程度等微观因素主导作用的一种竞争性平衡, 对这一平衡点的最佳控制是少子寿命大幅提升的本质原因.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号