首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 39 毫秒
1.
The luminescent properties of hybrid nanostructures constructed from colloidal quantum dots (QDs) of CdS passivated with thioglycolic acid, europium(III) tris(tenoyltrifluoroacetonate), and methylene blue dye molecules are studied. Spectral features typical for the formation of core/shell QDs of the CdS/CdS:Eu3+ type are found. It is noted that the adsorption of the europium complex at the QD interfaces and the formation of QDs of the CdS/TGA/Eu3+ are probable. Spectral patterns that reveal nonradiative energy transfer from the recombination luminescence centers of CdS QDs to the Eu3+ ions in the CdS/CdS:Eu3+ and CdS/TGA/Eu3+ structures are obtained. This is manifested in quenching the recombination luminescence of QDs and in the ignition of the intracentric luminescence of Eu3+, which enhance with an increase in the concentration of the europium complex. When such structures are combined with methylene blue molecules, the half-width of the absorption spectra is found to increase by 10–15% with an unchanged position of the absorption band maximum. With an increase in the concentration of methylene blue molecules, decreases in the intensity of the recombination luminescence band of CdS QDs at a wavelength of 530 nm and in the luminescence intensity of Eu3+ ions and simultaneously the rise up of the fluorescence of methylene blue at a wavelength of about 675 nm are observed. At the same time, a decrease in the luminescence lifetime of the bands of QDs and europium ions are observed. It is concluded that the nonradiative excitation energy transfer from both the recombination luminescence centers and Eu3+ ions to methylene blue molecules takes place.  相似文献   

2.
Re-dispersible CdS, 5 at.% Eu3+-doped CdS, 2 at.% Li+ and 5 at.% Eu3+ co-doped CdS nanoparticles in organic solvent are prepared by urea hydrolysis in ethylene glycol medium at a low temperature of 170°C. CdS nanoparticles have spherical shape with a diameter of ∼80 nm. The asymmetric ratio (A 21) of the integrated intensities of the electrical dipole transition to the magnetic dipole transition for 5 at.% Eu3+-doped CdS is found to be 3.8 and this ratio is significantly decreased for 2 at.% Li+ and 5 at.% Eu3+ co-doped CdS (A 21 = 2.6). It establishes that the symmetry environment of Eu3+ ion is more favored by Li-doping. Extra peak at 550 nm (green emission) could be seen for 2 and 5 at.% Eu3+ co-doped CdS. Also, the significant energy transfer from host CdS to Eu3+ is found for 5 at.% Eu3+-doped CdS compared to that for 2 at.% Li+ and 5 at.% Eu3+ co-doped CdS.   相似文献   

3.
Here, we report the role of particle size on the photoluminescence (PL) properties of CdS:Eu3+ nanocrystals by steady-state and time-resolved PL spectroscopy. It is found that the average decay time 〈τ〉 of undoped CdS nanocrystals increases with increasing the size. The fast component (nanosecond) is assigned due to trapping and slow component (above 10 ns) is due to defect-related emission. The decrease of fast component from 6.6 to 1.32 ns and the slow component from 20 to 14.6 ns of CdS (host) is observed in presence of Eu ions, indicating that the energy transfer occurs from CdS nanoparticles to Eu3+ ions. The decay time of Eu3+ in CdS shows two decay components (microsecond scale) and we believe that the fast component is attributed to surface-bound Eu3+ ions and slow component is due to lattice-bound Eu3+ ions. Analysis suggests that PL efficiency of Eu3+ ions depends on size of nanoparticles.  相似文献   

4.
We present a novel two-step chemical synthesis route to produce of disodium ethylenediaminetetraacetic acid (EDTA) capped and europium doped CdS nanoparticles. First EDTA was applied to chelate with cadmium on the surface of cadmium-rich CdS nanoparticles and act as a capping agent. Further, the purified EDTA-capped particles were used to bind with Eu3+. The purified and redispersed particles were characterized by UV/vis absorption, photoluminescence, TEM and SEM. It was observed that Eu3+ on the nanoparticle surface significantly increased the band gap emission intensity of the CdS nanoparticles.  相似文献   

5.
The preparation of benzoic acid-functionalized CaF2:Ln3+ (Ln = Eu or Tb) nanoparticles and their sensitized luminescence are described in this report. First, to achieve sufficient proof for energy transfer from benzoic acid (BA) to lanthanide ions doped in nanoparticles, we employ Eu3+ as the microscopic probe and investigate the luminescent spectra of benzoic acid-functionalized CaF2:Eu3+ (BA-CaF2:Eu3+) nanoparticles. Next, to further reveal the difference between sensitized luminescence and common luminescence for Eu3+ doped in CaF2 nanoparticles, we study the emission spectra of BA-CaF2:Eu3+ nanoparticles excited at 286 nm and 397 nm, respectively. Finally, we analyze and compare the luminescent spectra of BA-CaF2:Tb3+ and CaF2:Ce3+, Tb3+ nanoparticles in detail. Our results indicate that both Eu3+ and Tb3+ doped in CaF2 nanoparticles can be efficiently sensitized through benzoic acid.  相似文献   

6.
Eu3+ doped ZnO nanoparticles are known to have significance extent of surface Eu3+ ions due to a large difference in ionic radii. Effect of such Eu3+ ions on the luminescence properties of ZnO:Eu nanoparticles has been understood from the luminescence studies of ZnO:Eu nanoparticles covered with Y2O3 shell. Based on the asymmetric ratio of luminescence and extent of energy transfer, it is established that when ZnO:Eu nanoparticles are covered with Y2O3 shell, a part of Eu3+ ions present with ZnO:Eu core migrate to Y2O3 shell and occupy Y3+ lattice positions.  相似文献   

7.
Nanosized luminescent (Y,Bi)VO4:Eu3+ and Y(V,P)O4:Eu3+ were synthesized at low temperatures either by a coprecipitation method or by a hydrothermal method from aqueous solutions. The effect of Bi3+ ion or P5+ ion content in the lattice, annealing temperature effects on the crystal structure and the particle size, and the luminescence property of (Y,Bi)VO4:Eu3+ and Y(V,P)O4:Eu3+ nanoparticles were examined with a field-enhanced scanning electron microscopy, XRD, and a spectrofluorometer. The pristine YVO4:Eu3+, (Y,Bi)VO4:Eu3+, or Y(V,P)O4:Eu3+ nanoparticles are 35-50 nm in size. The luminescence spectrum of the Eu3+ ion was used to probe its position in the crystal lattice. The dopant ions enter the same lattice sites in the nanocrystalline as in the corresponding bulk material, resulting similar spectral features between them. Photoluminescence intensity is weak for the pristine nanoparticles. Annealing the nanoparticles at temperatures up to 1000 °C results in the increased luminescence intensity (>80% of micrometer-sized phosphors) with the minimal particle growth and the improved particle crystallinity.  相似文献   

8.
The nanocrystalline Gd2O3:Eu3+ powders with cubic phase were prepared by a combustion method in the presence of urea and glycol. The effects of the annealing temperature on the crystallization and luminescence properties were studied. The results of XRD show pure phase can be obtained, the average crystallite size could be calculated as 7, 8, 15, and 23 nm for the precursor and samples annealed at 600, 700 and 800 °C, respectively, which coincided with the results from TEM images. The emission intensity, host absorption and charge transfer band intensity increased with increasing the temperature. The slightly broad emission peak at 610 nm for smaller particles can be observed. The ratio of host absorption to O2−-Eu3+ charge transfer band of smaller nanoparticles is much stronger compared with that for larger nanoparticles, furthermore, the luminescence lifetimes of nanoparticles increased with increasing particles size. The effects of doping concentration of Eu3+ on luminescence lifetimes and intensities were also discussed. The samples exhibited a higher quenching concentration of Eu3+, and luminescence lifetimes of nanoparticles are related to annealing temperature of samples and the doping concentration of Eu3+ ions.  相似文献   

9.
ABSTRACT

According to the spectra of stationary X-ray excited luminescence (XEL) of BaF2: Eu nanophosphors at 80 and 294 K, it was revealed that the thermal annealing of fine-grained nanoparticles (d?=?35?nm) in the range of 400–1000°C, which is accompanied by an increase of their sizes in the range of 58–120?nm, does not result in effective changes of the charge state of Eu3 + → Eu2 + activator, in contrast to CaF2: Eu nanoparticles. The maximum light output of X-ray excited luminescence of BaF2: Eu nanophosphors in the 590?nm emission band of Eu3+ ion was observed at an annealing temperature of 600°C with the average size of nanoparticles 67?nm. The subsequent growth of annealing temperatures, especially in the range of 800–1000°C, causes decrease in the light output of X-ray excited luminescence due to the increase of defect concentration in the lattice as a result of sharp increase of nanoparticle sizes and their agglomeration. In BaF2: Eu nanoparticles of 58?nm size, according to the thermostimulated luminescence (TSL) spectrum, transformation of Eu3+ → Eu2+ under the influence of long-time X-ray irradiation was revealed for the peak of 151?K. Thus, X-ray excited luminescence spectra of BaF2: Eu nanophosphors are formed predominantly due to the emission of Eu3+ ions, while emission of Eu2+ ions is observed in the TSL spectra.  相似文献   

10.
According to stationary X-ray-excited luminescence spectra and thermally stimulated luminescence spectra of CaF2:Eu nanophosphors, it was found that Eu3+?→?Eu2+ conversion can occur during thermal annealing of fine-grained (d?=?25?nm) nanoparticles in the 200–800°C range, which is accompanied by an increase in their size within 40–189?nm. An important role of the exciton mechanism of Eu2+ luminescence excitation was revealed according to the temperature dependence of X-ray-excited luminescence spectra of CaF2:Eu nanoparticles of 114?nm size. The maximum of the X-ray-excited luminescence light output of CaF2:Eu nanophosphors in the Eu2+ ions’ emission band was traced out at 400–500°C annealing temperature and at the size of nanoparticles of 114–180?nm. The subsequent growth of the annealing temperatures, particularly in the 800–1000°C range, causes the reduction of X-ray-excited luminescence light output because of the increment of lattice defects’ concentration due to a sharp increase in the size of nanoparticles and their agglomeration.  相似文献   

11.
Yttrium aluminum garnet nanoparticles both undoped and doped with lanthanide ions (Ce3+, Eu3+, Dy3+ and Tb3+) having average size around 30 (±3 nm) nm were prepared by glycine nitrate combustion method followed by annealing at a relatively low temperature of 800 °C. Increase in the annealing temperature has been found to improve the luminescence intensity and for 1200 °C heated samples there exists strong energy transfer from Tb3+ to Ce3+ ions in YAG:Ce(2%),Tb(2%) nanoparticles as revealed by luminescence studies. Co-doping the YAG:Ce nanoparticles with Eu3+ results in significant decrease in the emission intensity of both Ce3+ and Eu3+ ions and this has been attributed to the oxidation of Ce3+ to Ce4+ and reduction of Eu3+ to Eu2+ ions. Dy3+ co-doping did not have any effect on the Ce3+ emission as there is no energy transfer between Dy3+ and Ce3+ ions.  相似文献   

12.
Zinc phosphate glasses doped with Gd2O3:Eu nanoparticles and Eu2O3 were prepared by conventional melt-quench method and characterized for their luminescence properties. Binary ZnO-P2O5 glass is characterized by an intrinsic defect centre emission around 324 nm. Strong energy transfer from these defect centres to Eu3+ ions has been observed when Eu2O3 is incorporated in ZnO-P2O5 glasses. Lack of energy transfer from these defect centres to Eu3+ in Gd2O3:Eu nanoparticles doped ZnO-P2O5 glass has been attributed to effective shielding of Eu3+ ions from the luminescence centre by Gd-O-P type of linkages, leading to an increased distance between the luminescent centre and Eu3+ ions. Both doped and undoped glasses have the same glass transition temperature, suggesting that the phosphate network is not significantly affected by the Gd2O3:Eu nanoparticles or Eu2O3 incorporation.  相似文献   

13.
Binary (ZnO)0.5(P2O5)0.5 glasses doped with Eu2O3 and nanoparticles of Gd2O3:Eu were prepared by conventional melt-quench method and their luminescence properties were compared. Undoped (ZnO)0.5(P2O5)0.5 glass is characterized by a luminescent defect centre (similar to L-centre present in Na2O-SiO2 glasses) with emission around 324 nm and having an excited state lifetime of 18 ns. Such defect centres can transfer the energy to Eu3+ ions leading to improved Eu3+ luminescence from such glasses. Based on the decay curves corresponding to the 5D0 level of Eu3+ ions in both Gd2O3:Eu nanoparticles incorporated as well as Eu2O3 incorporated glasses, a significant clustering of Eu3+ ions taking place with the latter sample is confirmed. From the lifetime studies of the excited state of L-centre emission from (ZnO)0.5(P2O5)0.5 glass doped with Gd2O3:Eu nanoparticles, it is established that there exists weak energy transfer from L-centres to Eu3+ ions. Poor energy transfer from the defect centres to Eu3+ ions in Gd2O3:Eu nanoparticles doped (ZnO)0.5(P2O5)0.5 glass has been attributed to effective shielding of Eu3+ ions from the luminescence centre by Gd-O-P type of linkages, leading to an increased distance between luminescent centre and Eu3+ ions.  相似文献   

14.
Sol–gel template method has been used to prepare BaFBr:Eu2+ nanophosphor-SiO2 hybrid entrapped within the nanopores array (of about 200 nm size) of a comercial anodized alumina (AA) membrane. Structural and morphological measurements using electron microscopy (SEM) and X-ray diffraction (XRD) have shown the presence of the BaFBr:Eu2+ nanophosphor in the silica xerogel entrapped within the nanopores array; photoluminescence and X-ray excited luminescence measurements have shown Eu2+ luminescence at 395 nm accompanied by a broad band due to AA membrane. The method assures a relatively uniform spreading of the BaFBr nanophosphor into the AA membrane pores array without the nanoparticles agglomeration. Preliminary imaging tests have shown a spatial resolution in the micrometer range and even in the submicrometer range can be expected. As BaFBr:Eu2+ is a very efficient X-ray phosphor the material might be used as X-ray micro-imaging detector.  相似文献   

15.
Eu3+-doped gadolinium orthophosphate (GdPO4) (Eu3+ at%=0, 2, 5, 7, 10, 15, 20 and 30) nanoparticles have been prepared by ethylene glycol route and subsequently heated at 500 and 900 °C. The crystallite size increases with increasing heat-treatment temperature. Luminescence study shows that magnetic dipole transition (5D07F1) is prominent over the electric dipole transition (5D07F2), which has been attributed to occupancy of inversion symmetry site by more Eu3+ ions in Eu3+-doped GdPO4. The luminescence intensity is enhanced as heat-treatment temperature increases from 500 to 900 °C due to the improved crystallinity. Optimum luminescence is observed for 5–7 at% Eu3+ in GdPO4 nanoparticles. Above this concentration, luminescence intensity decreases due to concentration quenching effect. This is supported by lifetime study.  相似文献   

16.
Red persistent luminescent diopside nanoparticles doped with Mn2+ and codoped with RE3+ (Eu2+, Dy3+) have been obtained by sol-gel method. The influence of codoping rare earth ions on the persistent luminescence was studied by wavelength-resolved thermally stimulated luminescence (TSL) measurements from 30 to 650 K after X-ray irradiation. From these first results, a mechanism of persistent luminescence is proposed. In this mechanism Mn2+ and Eu2+ act as TSL recombination centers, Mn3+ and Eu3+ being stable hole centers, whereas Dy3+ acts as a good electron trap giving rise to a TSL peak at high temperature. Finally, persistent luminescence was measured. Intensity and persistence of the red luminescence of CaMgSi2O6: Mn2+–Dy3+ are better than those of CaMgSi2O6: Mn2+ and CaMgSi2O6: Mn2+–Eu2+, which are in agreement with the results of TSL.  相似文献   

17.

The synthesis, morphological characterization, and optical properties of colloidal, Eu(III) doped Gd2O3 nanoparticles with different sizes and shapes are presented. Utilizing wet chemical techniques and various synthesis routes, we were able to obtain spherical, nanodisk, nanotripod, and nanotriangle-like morphology of Gd2O3:Eu3+ nanoparticles. Various concentrations of Eu3+ ions in the crystal matrix of the nanoparticles were tested in order to establish the levels at which the concentration quenching effect is negligible. Based on the luminescence spectra, luminescence lifetimes and optical parameters, which were calculated using the simplified Judd–Ofelt theory, correlations between the Gd2O3 nanoparticles morphology and Eu3+ ions luminescence were established, and allowed to predict the theoretical maximum quantum efficiency to reach from 61 to 98 %. We have also discussed the impact of the crystal structure of Gd2O3 nanoparticles, as well as coordinating environment of luminescent ions located at the surface, on the emission spectra. With the use of a tunable femtosecond laser system and the Z-scan measurement technique, the values of the effective two-photon absorption cross-section in the wavelength range from 550 to 1,200 nm were also calculated. The nonlinear optical measurements revealed maximum multi-photon absorption in the wavelength range from 600 to 750 nm.

  相似文献   

18.
Because highly luminescent lanthanide compounds are limited to Eu3+ and Tb3+ compounds with red (Eu, ~615 nm) and green (Tb, ~545 nm) emission colors, the development and application of time-resolved luminescence bioassay technique using lanthanide-based multicolor luminescent biolabels have rarely been investigated. In this work, a series of lanthanide complexes covalently bound silica nanoparticles with an excitation maximum wavelength at 335 nm and red, orange, yellow and green emission colors has been prepared by co-binding different molar ratios of luminescent Eu3+–Tb3+ complexes with a ligand N,N,N1,N1-(4′-phenyl-2,2′:6′,2′′-terpyridine-6,6′′-diyl)bis(methylenenitrilo) tetrakis (acetic acid) inside the silica nanoparticles. The nanoparticles characterized by transmission electron microscopy and luminescence spectroscopy methods were used for streptavidin labeling, and time-resolved fluoroimmunoassay (TR-FIA) of human prostate-specific antigen (PSA) as well as time-resolved luminescence imaging detection of an environmental pathogen, Giardia lamblia. The results demonstrated the utility of the new multicolor luminescent lanthanide nanoparticles for time-resolved luminescence bioassays.  相似文献   

19.
Rare earth ion (Tb3+ and Eu3+)-doped alumina films were prepared by the aqueous sol-gel method under various conditions. The influences of the OH groups (phonon relaxation) and rare earth ion concentration (cross-relaxation) on luminescence were examined. In regard to the former relaxation, at treatment temperature above 600°C, reciprocal lifetime decreased with OH concentration, and below 500°C, decreased markedly and nonlinearly. On the other hand, in regard to the latter relaxation, there was negligible effect on luminescence for these doped films. The quantitative treatment was tried to lifetime considering these influences. Tb3+ and Eu3+ co-doped alumina films showed enhanced Eu3+ luminescence by the energy transfer from Tb3+ to Eu3+. Eu3+ luminescence intensity increased with a greater Tb3+ concentration.  相似文献   

20.
Europium-doped cubic Gd2O3:Eu3+ nanoparticles containing various activator content in the range of 5-15 wt% were synthesized by a liquid-phase reaction method to investigate the influence of Eu3+ loading on the optical properties of phosphors by using XRD, TEM, BET, spectrometer and fluorometer. The size of Gd2O3:Eu3+ powders was in the range 21-41 nm. The phosphors showed an initial increase in luminescence and then a subsequent decrease with further doping (above 10 wt%). The decay time was reduced with increasing Eu loading; however, it decreased significantly above the 10% Eu doping. From spectroscopic studies, the Eu3+ doping ion distribution was uniform and homogeneous up to the 10 wt% loading because no concentration quenching effect was observed. However, further Eu3+ doping above 10 wt% reduced the luminescence due to the concentration quenching effect, as deduced from the shortening of the decay time.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号