首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Green emission at around 500 nm is observed in Gd2O3:Ce3+ nanoparticles and the intensity is highly dependent on the concentration of Ce3+ in the nanoparticles. The luminescence of this emission displays both picosecond (ps) and millisecond (ms) lifetimes. The ms lifetime is over four orders of magnitude longer than typical luminescence lifetimes (10-40 ns) of Ce3+ in traditional Ce3+ doped phosphors and therefore likely originates from defect states. The picosecond lifetime is shorter than the typical Ce3+ value and is also likely due to defect or surface states. When the samples are annealed at 700 °C, this emission disappears possibly due to changes in the defect moieties or concentration. In addition, a blue emission at around 430 nm is observed in freshly prepared Gd2O3 undoped nanoparticles, which is attributed to the stabilizer, polyethylene glycol biscarboxymethyl ether. On aging, the undoped particles show similar emission to the doped particles with similar luminescence lifetimes. When Eu3+ ions are co-doped in Gd2O3:Ce nanoparticles, both the green emission and the emission at 612 nm from Eu3+ are observed.  相似文献   

2.
Yttrium aluminum garnet (YAG) particles doped with Tb3+ or double doped with Tb3+ and Ce3+ were prepared by spray pyrolysis and characterized by photo- and cathode-luminescence. It was tried to incorporate a broad band of Ce3+ activator into the line peaks of Tb3+ in YAG host without the reduction of emission intensity. Ce-codoped YAG:Tb particles showed a broad band emission due to the d-f transition of Ce3+ and a reduction in the intensity of emission peaks due to 5D3-7Fj (j=3, 4, 5, 6) transition of Tb3+ when they were excited by the ultraviolet light of 270 nm. These results supported that an effective energy transfer occurs from Tb3+ to Ce3+ in YAG host. Codoping Ce3+ ions greatly intensified the excitation peak at 270 nm for the emission at 540 nm of Tb3+, which means that more lattice defects, involving in the energy absorption and transfer to Tb3+, are formed by the Ce3+ codoping. The finding gives a promising approach for enhancing the luminescence efficiency.  相似文献   

3.
The preparation of benzoic acid-functionalized CaF2:Ln3+ (Ln = Eu or Tb) nanoparticles and their sensitized luminescence are described in this report. First, to achieve sufficient proof for energy transfer from benzoic acid (BA) to lanthanide ions doped in nanoparticles, we employ Eu3+ as the microscopic probe and investigate the luminescent spectra of benzoic acid-functionalized CaF2:Eu3+ (BA-CaF2:Eu3+) nanoparticles. Next, to further reveal the difference between sensitized luminescence and common luminescence for Eu3+ doped in CaF2 nanoparticles, we study the emission spectra of BA-CaF2:Eu3+ nanoparticles excited at 286 nm and 397 nm, respectively. Finally, we analyze and compare the luminescent spectra of BA-CaF2:Tb3+ and CaF2:Ce3+, Tb3+ nanoparticles in detail. Our results indicate that both Eu3+ and Tb3+ doped in CaF2 nanoparticles can be efficiently sensitized through benzoic acid.  相似文献   

4.
This letter reports the novel three emission bands based on phosphate host matrix, KBaPO4 doped with Eu2+, Tb3+, and Sm3+ for white light-emitting diodes (LEDs). The phosphors were synthesized by solid-state reaction and thermal stability was elucidated by measuring photoluminescence at higher temperatures. Eu2+-doped KBaPO4 phosphor emits blue luminescence with a peak wavelength at 420 nm under maximum near-ultraviolet excitation of 360 nm. Tb3+-doped KBaPO4 phosphor emits green luminescence with a peak wavelength at 540 nm under maximum near-ultraviolet excitation of 370 nm. Sm3+-doped KBaPO4 phosphor emits orange-red luminescence with a peak wavelength at 594 nm under maximum near-ultraviolet excitation of 400 nm. The thermal stabilities of KBaPO4:Ln (Ln=Eu2+, Tb3+, Sm3+), in comparison to commercially available YAG:Ce3+ phosphor were found to be higher in a wide temperature range of 25-300 °C.  相似文献   

5.
The nanocrystalline Gd2O3:Eu3+ powders with cubic phase were prepared by a combustion method in the presence of urea and glycol. The effects of the annealing temperature on the crystallization and luminescence properties were studied. The results of XRD show pure phase can be obtained, the average crystallite size could be calculated as 7, 8, 15, and 23 nm for the precursor and samples annealed at 600, 700 and 800 °C, respectively, which coincided with the results from TEM images. The emission intensity, host absorption and charge transfer band intensity increased with increasing the temperature. The slightly broad emission peak at 610 nm for smaller particles can be observed. The ratio of host absorption to O2−-Eu3+ charge transfer band of smaller nanoparticles is much stronger compared with that for larger nanoparticles, furthermore, the luminescence lifetimes of nanoparticles increased with increasing particles size. The effects of doping concentration of Eu3+ on luminescence lifetimes and intensities were also discussed. The samples exhibited a higher quenching concentration of Eu3+, and luminescence lifetimes of nanoparticles are related to annealing temperature of samples and the doping concentration of Eu3+ ions.  相似文献   

6.
Calcium lanthanide oxyborate doped with rare-earth ions LnCa4O(BO3)3:RE3+ (LnCOB:RE, Ln=Y, La, Gd, RE=Eu, Tb, Dy, Ce) was synthesized by the method of solid-state reaction at high temperature. Their fluorescent spectra were measured from vacuum ultraviolet (VUV) to visible region at room temperature. Their excitation spectra all have a broadband center at about 188 nm, which is ascribed to host absorption. Using Dorenbos’ and Jφrgensen's work [P. Dorenbos, J. Lumin. 91 (2000) 91, R. Resfeld, C.K. Jφrgensen, Lasers and Excite States of Rare Earth [M], Springer, Berlin, 1977, p. 45], the position of the lowest 5d levels E(Ln,A) and charge transfer band Ect were calculated and compared with their excitation spectra.Eu3+ and Tb3+ ions doped into LnCOB show efficient luminescence under VUV and UV irradiation. In this system, Ce3+ ions do not show efficient luminescence and quench the luminescence of Tb3+ ions when Tb3+ and Ce3+ ions are co-doped into LnCOB. GdCOB doped with Dy3+ shows yellowish white light under irradiation of 254 nm light for the reason that Gd3+ ions transfer the energy from itself to Dy3+. Because of the existence of Gd3+, the samples of GdCOB:RE3+ show higher excitation efficiency than LaCOB:RE3+ and YCOB:RE3+, around 188 nm, which indicates that the Gd3+ ions have an effect on the host absorption and can transfer the excitation energy to the luminescent center such as Tb3+, Dy3+ and Eu3+.  相似文献   

7.
Phosphors CaYBO4:RE3+ (RE=Eu, Gd, Tb, Ce) were synthesized with the method of solid-state reaction at high temperature, and their vacuum ultraviolet (VUV)-visible luminescent properties in VUV-visible region were studied at 20 K. In CaYBO4, it is confirmed that there are two types of lattice sites that can be substituted by rare-earth ions. The host excitation and emission peaks of undoped CaYBO4 are very weak, which locate at about 175 and 350-360 nm, respectively. The existence of Gd3+ can efficiently enhance the utilization of host absorption energy and result in a strong emission line at 314 nm. In CaYBO4, Eu3+ has typical red emission with the strongest peak at 610 nm; Tb3+ shows characteristic green emission, of which the maximum emission peak is located at 542 nm. The charge transfer band of CaYBO4:Eu3+ was observed at 228 nm; the co-doping of Gd3+ and Eu3+ can obviously sensitize the red emission of Eu3+. The fluorescent spectra of CaYBO4:Ce3+ is very weak due to photoionization; the co-addition of Ce3+-Tb3+ can obviously quench the luminescence of Tb3+.  相似文献   

8.
Enhanced green photoluminescence and cathodoluminescence (CL) from Tb3+ ions due to co-doping with Ce3+ ions were observed from SiO2:Ce,Tb powder phosphors prepared by a sol-gel technique. Blue emission from the Ce3+ ions was completely suppressed by Tb co-doping, presumably due to energy transfer from Ce3+ to Tb3+. In addition, the green CL intensity from SiO2:Ce,Tb degraded by ∼50% when the powders were irradiated for 10 h with a 2 keV, 54 mA/cm2 beam of electrons in an ultra-high vacuum chamber containing either 1×10−8 or 1×10−7 Torr O2. Desorption of oxygen from the surface was observed during the decrease of CL intensity. The mechanisms for energy transfer from Ce3+ ions to Tb3+ ions to enhance the green luminescence, and mechanisms for desorption of oxygen from the phosphor surface that would result in decreased CL intensity are discussed.  相似文献   

9.
Y2O3:Eu3+, Tb3+ phosphors with white emission are prepared with different doping concentration of Eu3+ and Tb3+ ions and synthesizing temperatures from 750 to 950 °C by the co-precipitation method. The resulted phosphors were characterized by X-ray diffraction (XRD) and photoluminescence (PL) spectroscopy. The results of XRD indicate that the crystallinity of the synthesized samples increases with enhancing the firing temperature. The photoluminescence spectra indicate the Eu3+ and Tb3+ co-doped Y2O3 phosphors show five main emission peaks: three at 590, 611 and 629 nm originate from Eu3+ and two at 481 and 541 nm originate from Tb3+, under excitation of 250-320 nm irradition. The white light luminescence color could be changed by varying the excitation wavelength. Different concentrations of Eu3+ and Tb3+ ions were induced into the Y2O3 lattice and the energy transfer from Tb3+→Eu3+ ions in these phosphors was found. The Commission International de l’Eclairage (CIE) chromaticity shows that the Y2O3:Eu3+, Tb3+ phosphors can obtain an intense white emission.  相似文献   

10.
NaLaP2O7 and NaGdP2O7 powder samples are prepared by solid-state reactions at 750 and 600 °C, respectively, and the VUV-excited luminescence properties of Ln3+ (Ln=Ce, Pr, Tb, Tm, Eu) in both diphosphates are studied. Ln3+ ions in both hosts show analogous luminescence. For Ce3+-doped samples, the five Ce3+ 5d levels can be clearly identified. As for Pr3+ and Tb3+-doped samples, strong 4f-5d absorption band around 172 nm is observed, which matches well with Xe-He excimer in plasma display panel (PDP) devices. As a result, Pr3+ can be utilized as sensitizer to absorb 172 nm VUV photon and transfer energy to appropriate activators, and Tb3+-doped NaREP2O7(RE=La, Gd) are potential 172 nm excited green PDP phosphors. For Tm3+ and Eu3+-doped samples, the Tm3+-O2− charge transfer band (CTB) is observed to be at 177 nm, but the CTB of Eu3+ is observed at abnormally low energy position, which might originate from multi-position of Eu3+ ions. The similarity in luminescence properties of Ln3+ in both hosts indicates certain structural resemblance of coordination environment of Ln3+ in the two sodium rare earth diphosphates.  相似文献   

11.
Zinc silicate phosphors co-doped with Eu3+ ions and also with both Eu3+ and Tb3+ ions were prepared by high temperature solid state reaction in air or reducing atmosphere. The luminescence characteristics of the prepared phosphors were investigated. While in the samples prepared in air, Eu3+ emission was found to be dominant over Tb3+ emission, in the samples prepared in reducing atmosphere, intense Eu2+ emission at 448 nm was found to be predominant over narrow Tb3+ emission. Luminescence studies showed that Eu3+ ions occupy asymmetric sites in Zn2SiO4 lattice. The intense f-f absorption peak of Eu3+ at 395 nm observed in these phosphors suggests their potential as red emitting phosphors for near ultra-violet light emitting diodes.  相似文献   

12.
Terbium (1 mol%) doped ZnO-SiO2 binary system was prepared by a sol-gel process. Nanoscopic effects of ZnO on the photoluminescence (PL) and the cathodoluminescence (CL) properties were studied. Defects emission from ZnO nanoparticles was measured at 560 nm and the line emission from Tb3+ ions in SiO2:Tb3+ and ZnO-SiO2:Tb3+ with a major peak at 542 nm was measured. The PL excitation wavelength for 542 nm Tb3+ emission was measured at ∼320 nm in both SiO2:Tb3+ and ZnO-SiO2:Tb3+. The CL data showed quenched luminescence of the ZnO nanoparticles at 560 nm from a composite of ZnO-SiO2:Tb3+ and a subsequent increase in 542 nm emission from the Tb3+ ions. This suggests that energy was transferred from the ZnO nanoparticles to enhance the green emission of the Tb3+ ions. The PL and CL properties of ZnO-SiO2:Tb3+ binary system and possible mechanism for energy transfer from the ZnO nanoparticles to Tb3+ ions are discussed.  相似文献   

13.
Combustion method was used in this study to prepare BaAl2O4:Eu2+ phosphors co-doped with different trivalent rare-earths (Re3+=Dy3+, Nd3+, Gd3+, Sm3+, Ce3+, Er3+, Pr3+ and Tb3+) ions at an initiating temperature of 600 °C. The phosphors were annealed at 1000 °C for 3 h. As confirmed from the X-ray diffraction (XRD) data, both as prepared and post annealed samples crystallized in the well known hexagonal structure of BaAl2O4. All samples exhibited bluish-green emission associated with the 4f65d1→4f7 transitions of Eu2+ at ∼500 nm. Although the highest intensity was observed from Er3+ co-doping, the longest afterglow (due to trapping and detrapping of charge carriers) was observed from Nd3+ followed by Dy3+ co-doping. The traps responsible for the long afterglow were studied using thermoluminescence (TL) spectroscopy.  相似文献   

14.
Effect of annealing temperature on luminescence of Eu3+ ions was studied in nanocrystal zirconia prepared by co-precipitation. The XRDs reveal with annealing temperature increasing the tetragonal crystal phase of the samples is stable. The emission spectra show the strong emission at 595 and 604 nm at 394 nm excitation. Under continuous UV (394 nm) irradiation the 604 nm emission intensity changes of the samples show as a function of irradiation time. In addition, the charge-transfer states of the samples are affected by the annealing temperature. These are associated with the defects at/in the surface of the nanocrystalline ZrO2 with Eu3+ ions.  相似文献   

15.
Polycrystalline KCaSO4Cl:Eu, Dy, KCaSO4Cl:Ce, Dy and KCaSO4Cl:Ce, Mn phosphors prepared by a solid state diffusion method have been studied for its photoluminescence (PL) characteristics. The presence of two overlapping bands at around 400 and 450 nm in the PL emission spectra of the phosphor suggests the presence of Eu2+ in the host compound occupying two different lattice sites. The effects of co-doping on the photoluminescence (PL) characteristics of KCaSO4Cl:Eu or Ce phosphors have been studied. The decrease in peak intensity of the phosphor on co-doping it with Dy gives an insight into the emission mechanism of the phosphors, which involves energy transfer from Eu2+→Dy3+, Ce3+→Dy3+ and Ce3+→Mn2+.  相似文献   

16.
Long persistent SrAl2O4:Eu2+ phosphors co-doped with Dy3+ were prepared by the solid state reaction method. The main diffraction peaks of the monoclinic structure of SrAl2O4 were observed in all the samples. The broad band emission spectra at 497 nm for SrAl2O4:Eu2+, Dy3+ were observed and the emission is attributed to the 4f65d1 to 4f7 transition of Eu2+ ions. The samples annealed at 1100–1200 °C showed similar broad TL glow curves centered at 120 °C. The similar TL glow curves suggest that the traps responsible for them are similar. The long afterglow displayed by the phosphors annealed at different temperatures, may be attributed to the Dy3+ ions acting as the hole trap levels, which play an important role in prolonging the duration of luminescence.  相似文献   

17.
The processes of excitation energy transfer in phosphors based on single-crystal Tb3Al5O12:Ce (TbAG:Ce) and Tb3Al5O12:Ce,Eu (TbAG:Ce,Eu) garnet films have been investigated. These films are considered to be promising materials for screens for X-ray images and luminescence converters of blue LED radiation. The conditions for excitation energy transfer from the matrix (Tb3+ cations) to Ce3+ and Eu3+ ions in TbAG:Ce and TbAG:Ce,Eu phosphors have been analyzed in detail. It is established that a cascade process of excitation energy transfer from Tb3+ ions to Ce3+ and Eu3+ ions and from Ce3+ ions to Eu3+ ions is implemented in TbAG:Ce,Eu via dipole-dipole interaction and through the Tb3+ cation sublattice.  相似文献   

18.
Oleic acid (OA)-modified CaF2:Tb3+ nanoparticles with various Tb3+ concentrations and CaF2:Ce3+, Tb3+ nanoparticles were synthesized. The as-prepared nanoparticles were shown to be well dissolved in some common organic solvents, such as chloroform and toluene. The nanoparticles were characterized by Fourier transform infrared spectroscopy (FT-IR), X-Ray diffraction (XRD) and transmission electron microscopy (TEM). The investigation of fluorescence properties of CaF2:Tb3+ nanoparticles showed that the Tb3+ ions could be sensitized efficiently by the surface coating of OA and CaF2:Tb3+ nanoparticles with 10 mol% Tb3+ concentrations possess the highest emission intensity. The comparison of emission for CaF2:Ce3+, Tb3+ and CaF2:Tb3+ (10 mol%) nanoparticles revealed that the emission intensity of the former is about 4.5 times as strong as that of the latter.  相似文献   

19.
Undoped CeO2, and single and triple doped CeO2:M (where M=Dy3+, Tb3+and Eu3+) nanophosphors were synthesized through a simple sonochemical process and characterized by using X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), high resolution transmission electron microscopy (HRTEM), EDS and photoluminescence (PL) spectrophotometry. The TEM micrographs show that resultant nanoparticles have flower-like shape. The doped samples showed multicolor emission on single wavelength excitation. Energy transfer was observed from host to the dopant ions. Characteristic blue emission from Dy3+ ions, green from Tb3+ ions and red from Eu3+ ions were observed. The CIE coordinates of the triple doped Ce0.86Dy0.005Tb0.055Eu0.08O2 nanoflowers lie in the white light region of the chromaticity diagram and show promise as good phosphor materials for new lighting devices.  相似文献   

20.
Borate Ba3InB9O18 (BIBO) has been adopted as a host material for phosphors for the first time. Lanthanide ions (Eu3+/Tb3+)-doped BIBO phosphors have been synthesized by solid-state reaction and luminescent properties investigated under ultravoilet (UV) excitation. For red phosphor BIBO:Eu, dominant emission peaking at 590 nm was attributed to 5D07F1 transition of Eu3+, which confirmed that the local site of Eu3+ occupied by In3+ ion in BIBO crystal lattice is at inversion symmetry center. Optimum Eu3+ concentration of BIBO:Eu under UV excitation with 227 nm wavelength is around 40%. The green phosphor BIBO:Tb showed bright green emission at 550 with 232 nm light excited and optimal of Tb3+ concentration measured in BIBO is about 8%. The corresponding luminescence mechanisms of Ln-doped BIBO (Ln=Eu3+/Tb3+) were analyzed. The luminescent intensity of Tb3+ can be significantly improved by co-doping of Bi3+ in the BIBO:Tb lattice. The likely reason was proposed in terms of the different interactions of the host lattice with these ions, and of these ions with each other.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号