首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
Colloidal CdSe nanoparticles (NPs), passivated with CdS and ZnS, were characterized by resonant Raman scattering and photoluminescence (PL). The effect of the passivating shell, its volume and formation procedure on optical and vibrational spectra is discussed. Analyzing the Raman peaks due to optical phonons inside the core and those related to the core-shell interface allows some understanding of the relation between the core-shell structure and its PL properties to be achieved. In particular, a compositional intermixing at the core/shell interface of the NPs was deduced from the Raman spectra, which can noticeably affect their PL intensity.  相似文献   

2.
Transparent conductive Al-doped zinc oxide (AZO) films with highly (0 0 2)-preferred orientation were deposited on quartz substrates at room temperature by RF magnetron sputtering. Optimization of deposition parameters was based on RF power, Ar pressure in the vacuum chamber, and distance between the target and substrate. The structural, electrical, and optical properties of the AZO thin films were investigated by X-ray diffraction, Hall measurement, and optical transmission spectroscopy. The 250 nm thickness AZO films with an electrical resistivity as low as 4.62 × 10−4 Ω cm and an average optical transmission of 93.7% in the visible range were obtained at RF power of 300 W, Ar flow rate of 30 sccm, and target distance of 7 cm. The optical bandgap depends on the deposition condition, and was in the range of 3.75-3.86 eV. These results make the possibility for light emitting diodes (LEDs) and solar cells with AZO films as transparent electrodes, especially using lift-off process to achieve the transparent electrode pattern transfer.  相似文献   

3.
Without intentionally heating the substrates, indium tin oxide (ITO) thin films of thicknesses from 72 nm to 447 nm were prepared on polyethylene terephthalate (PET) substrates by DC reactively magnetron sputtering with pre-deposition substrate surfaces plasma cleaning. The dependence of structural, electrical, and optical properties on the films thickness were systematically investigated. It was found that the crystal grain size increases, while the transmittance, the resistivity, and the sheet resistance decreases as the film thickness was increasing. The thickest film (∼447 nm) was found of the lowest sheet resistance 12.6 Ω/square, and its average optical transmittance (400-800 nm) and the 550 nm transmittance was 85.2% and 90.4%, respectively. The results indicate clearly that dependence of the structural, electrical, and optical properties of the films on the film thickness reflected the improvement of the film crystallinity with the film thickness.  相似文献   

4.
Structural, optical and magnetic studies of Co-doped ZnO have been carried out for bulk as well as thin films. The magnetic studies revealed the superparamagnetic nature for low-temperature synthesized samples, indicating the presence of cobalt metallic clusters, and this is supported by the optical studies. For the high-temperature sintered samples one obtains paramagnetism. The optical studies reveal the presence of Co2+ ions in the tetrahedral sites indicating proper doping. Interestingly, the films deposited by laser ablation from the paramagnetic target showed room temperature ferromagnetism. It appears that the magnetic nature of this system is process dependent.  相似文献   

5.
The triangular-shaped Au/ZnO nanoparticle arrays were fabricated on fused quartz substrate using nanosphere lithography. The structural characterization of the Au/ZnO nanoparticle arrays was investigated by atomic force microscopy. The absorption peak due to the surface plasmon resonance of Au particles at the wavelength of about 570 nm was observed. The nonlinear optical properties of the nanoparticle arrays were measured using the z-scan method at a wavelength of 532 nm with pulse duration of 10 ns. The real and imaginary part of third-order nonlinear optical susceptibility, Re χ(3) and Im χ(3), were determined to be 1.15 × 10−6 and −5.36 × 10−7 esu, respectively. The results show that the Au/ZnO nanoparticle arrays have great potential for future optical devices.  相似文献   

6.
A novel optical approach is proposed to generate millimeter wave (MMW) pulse signal based on the pulse reshaping of superstructure fiber Bragg grating (SSFBG). In our scheme, one input pico-second Gaussian pulse is transformed into n Gaussian pulses by the SSFBG reshaping firstly, and then the pulse train is replicated to form a required frequency modulation MMW optical pulse envelope by the linear chirped fiber Bragg grating (LCFBG) or other highly dispersive element. The high-speed photodetector (PD) and band-pass filter can transform the MMW optical pulse into an MMW pulse signal ultimately. Depending on this scheme, MMW signals with frequency up to 10 GHz can be easily generated by the completed fiber components.  相似文献   

7.
Optical properties of Tm-doped GaSe single crystals were investigated by measurements of optical absorption and photoluminescence. The single crystals were grown by the Bridgman technique. The X-ray diffraction analysis revealed that the single crystals were in the ε-type GaSe phase. The optical absorption spectra showed a sharp absorption peak at 582 nm near the band edge, which is due to direct free exciton. The temperature dependence of the energy of the exciton absorption peak was well fitted by the Varshni relation. In the photoluminescence spectrum at 10 K, we observed a very weak emission peak at 586 nm, a relatively strong emission peak centered at 613 nm, and several sharp and narrow emission peaks in the 790-840 nm region. The two emission peaks at 586 and 613 nm were associated with intrinsic emission lines due to direct free exciton and indirect bound exciton. The emission peaks in the 790-840 nm region, which were related to extrinsic emission, were assigned as due to the 3F43H6 transition of Tm3+ ions with a low symmetry of D3 in the host lattice.  相似文献   

8.
Microstructure, magnetic and optical properties of polycrystalline Fe-doped ZnO films fabricated by cosputtering with different Fe atomic fractions (xFe) have been examined systematically. Fe addition could affect the growth of ZnO grains and surface morphology of the films. As xFe is larger than 7.0%, ZnFe2O4 grains appear in the films. All the films are ferromagnetic. The ferromagnetism comes from the ferromagnetic interaction activated by defects between the Fe ions that replace Zn ions. The average moment per Fe ion reaches a maximum value of 1.61 μB at xFe = 4.8%. With further increase in xFe, the average moment per Fe ion decreases because the antiferromagnetic energy is lower than the ferromagnetic one due to the reduced distance between the adjacent Fe ions. The optical band gap value decreases from 3.245 to 3.010 eV as xFe increases from 0% to 10%. Photoluminescence spectra analyses indicate that many defects that affect the optical and magnetic properties exist in the films.  相似文献   

9.
The magnetic properties, electronic structure, and optical properties of the filled skutterudite BaFe4Sb12 are calculated by the first-principles full-potential linearized augmented plane wave (FPLAPW) plus local orbital method. It is found that the local spin density approximation (LSDA) method appears more accurate than the generalized gradient approximation (GGA) method in calculating the electronic structures and optical properties of this compound. Furthermore, our calculated lattice constant and spin magnetic moments with the LSDA method are in overall better agreement with experiment. In contrast with recent experiment, our calculations are in good agreement with experimental reflectivity spectra and optical conductivity spectrum.  相似文献   

10.
Soluble multi-walled carbon nanotubes (MWNTs) have been obtained by noncovalent modification with poly [2-methoxy,5-(2′-ethyl-hexyloxy)-p-phenylene vinylene] (MEH-PPV). For the composite MWNT/MEH-PPV, there is π-π interaction between the MEH-PPV and MWNTs in addition to the wrapping of the polymer. The nonlinear optical transmittance was measured using a nanosecond optical parametric oscillator pumped with a Nd:YAG system. Excellent optical limiting performance of the composite MWNT/MEH-PPV was observed both in the visible region of 590-680 nm and at the wavelength of 1064 nm. By means of time-correlated single-photon counting fluorescence measurement, an explanation based on the nonlinear absorption of MWNT dominated by the intermolecular energy transfer was proposed.  相似文献   

11.
Sculptured copper thin films were deposited on glass substrates, using different deposition rates. The nano-structure and morphology of the films were obtained, using X-ray diffraction (XRD), atomic force microscopy (AFM) and scanning electron microscopy (SEM). Their optical properties were measured by spectrophotometry in the spectral range of 340-850 nm. The real and imaginary refractive indices, film thickness and fraction of metal inclusion in the film structure were obtained from optical fitting of the spectrophotometer data.  相似文献   

12.
GaN layer on c-plane misoriented sapphire, grown by metal organic chemical vapor deposition, has been studied. It was observed that the random and non-uniform distribution of the step was caused by the step reconstruction for GaN grown on 0° sapphire by atomic force microscopy. The image quality parameter analysis of electron back-scatter diffraction indicated that the strains were reduced for GaN grown on 0.2° and 0.3° sapphire, and optical and electrical properties were improved. The electroluminescence intensity of LED grown on 0.2° and 0.3° sapphire was 2 times as that of 0° sapphire.  相似文献   

13.
A novel method is developed to analyze a single-mode 3-D optical waveguide based on the ray-approximation method, which we call the improved ray approximation method. The effect of the optical parameters (wavelength, refractive-index and refractive-index difference) on the optimum design is investigated for a strong single-mode 3-D optical waveguide. This is simple and effective for the optimum design of the optical waveguide using the method. This will be helpful for the design of waveguide devices.  相似文献   

14.
J.P. Kar 《Applied Surface Science》2010,256(16):4995-4999
Zinc oxide (ZnO) nanostructures were grown on A-, C- and R-plane sapphires by metal organic chemical vapor deposition (MOCVD) technique. The shape of nanostructures was greatly influenced by the underlying sapphire substrate. Vertical aligned nanowires were observed on A- and C-plane sapphires, whereas the nanopencils were grown on R-plane sapphire. A correlation between the morphological and optical properties of the nanostructures has been established, where the morphological and structural characteristics are responsible for the evolution of optical properties. The nanowires, grown on C-plane sapphires, have shown superior optical properties. Comparatively higher photo-induced wettability transition has also been observed for ZnO nanostructures on R-plane sapphire.  相似文献   

15.
N-doped ZnO films were produced using N2 as N source by metal-organic chemical vapor deposition (MOCVD) system which has been improved with radio-frequency (RF)-assisted equipments. The data of secondary ion mass spectroscopy (SIMS) indicate that the concentration of N in N-doped ZnO films is around 5 × 1020 cm−3, implying that sufficient incorporation of N into ZnO can be obtained by RF-assisted equipment. On this basis, the structural, optical and electrical properties of Al-N codoped ZnO films were studied. Then, the effect of RF power on crystal quality, surface morphologies, optical properties was analyzed using X-ray diffraction, atomic force microscopy and photo-luminescence methods. The results illustrate that the RF plasma is the key factor for the improvement of crystal quality. Then the observation of A0X recombination associated with NO acceptor in low-temperature PL spectrum proved that some N atoms have occupied the positions of O atoms in ZnO films. Hall measurements shown that p-type ZnO film deposited on quartz glasses was obtained when RF power was 150 W for the Al-N codoped ZnO films, while the resistivity of N-doped ZnO films was rather high. Compared with the Al-doped ZnO film, the obviously increased resistivity of codoped films indicates that the formation of NO acceptors compensate some donors in ZnO films effectively.  相似文献   

16.
A microscopic theory for the induced terahertz (THz) absorption of semiconductors is applied to study the time-dependent system response after non-resonant optical excitation. The formation of excitonic populations from an interacting electron-hole plasma is analyzed and the characteristic THz signatures are computed. Good qualitative agreement with recent experiments is obtained.  相似文献   

17.
We fabricated a silica optical fiber doped with InP sandwiched in the core and the inner cladding layers by using the conventional modified chemical vapor deposition process. We presented the experimental X-ray analysis on the optical properties and found that compound InP was contained in the fiber core after annealing process. Broadband photoluminescence observed in InP doped fiber was well coincided with those coming from the recombination of deep levels in InP. The occurrence of temperature-dependent photoluminescence both at the lower and room temperature would be related with the localized defects and their confinement in the micro-network structure of Si-O-Si. The Raman spectra reveal that Si-O-In vibration would disorder the silica ring structures and enervate their vibrations.  相似文献   

18.
Al-doped ZnO (ZnO:Al) films prepared by RF magnetron co-sputtering at room temperature were thermally treated in hydrogen ambient at 300 °C to enhance the films’ characteristics for transparent conductive oxide applications. The electrical properties of the hydrogen-annealed films were improved and preserved in air ambient, even though the crystal structures of the films were not changed by the thermal treatment. The optical and oxygen bonding characteristics of ZnO:Al films manifested that absorbed oxygen species on the films were removed by the hydrogen-annealing process. These results supported that the development of the electrically reliable ZnO:Al films could be realized using the hydrogen-annealing process.  相似文献   

19.
The effect of intrinsic defects and isoelectronic substitutional impurities on the electronic structure of boron-nitride (BN) nanotubes is investigated using a linearized augmented cylindrical wave method and the local density functional and muffin-tin approximations for the electron potential. In this method, the electronic spectrum of a system is governed by a free movement of electrons in the interatomic space between cylindrical barriers and by a scattering of electrons from the atomic centers. Nanotubes with extended defects of substitution NB of a boron atom by a nitrogen atom and, vice versa, nitrogen by boron BN with one defect per one, two, and three unit cells are considered. It is shown that the presence of such defects significantly affects the band structure of the BN nanotubes. A defect band π(B, N) is formed in the optical gap, which reduces the width of the gap. The presence of impurities also affects the valence band: the widths of s, sp, and pπ bands change and the gap between s and sp bands is partially filled. A partial substitution of the N by P atoms leads to a decrease in the energy gap, to a separation of the Ds(P) band from the high-energy region of the s(B, N) band, as well as to the formation of the impurity (P) and *(P) bands, which form the valence-band top and conduction-band bottom in the doped system. The influence of partial substitution of N atoms by the As atom on the electronic structure of BN nanotubes is qualitatively similar to the case of phosphorus, but the optical gap becomes smaller. The optical gap of the BN tubule is virtually closed due to the effect of one Sb atom impurity per translational unit cell, in contrast to the weak indium-induced perturbation of the band structure of the BN nanotube. Introduction of the one In, Ga or Al atom per three unit cells of the (5, 5) BN nanotube results in 0.6 eV increase of the optical gap. The above effects can be detected by optical and photoelectron spectroscopy methods, as well as by measuring electrical properties of the pure and doped BN nanotubes. They can be used to design electronic devices based on BN nanotubes.  相似文献   

20.
Sheng-fa Fan 《Optik》2011,122(2):142-144
The optical anisotropic states in the azo-dye Disperse Red 13 doped poly(methyl methacrylate) polymeric film are induced by polarized light and the nonlinear refractive index in these states are studied by the Z-scan technique. It is found that the n2 of the sample can be controlled by changing both the polarization direction and the intensity of the 514 nm light. Photo-induced isomerization and reorientation of azo chromophores in polymer matrices are used to explain the results.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号