首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 27 毫秒
1.
The proton transfer reaction between OH- and C2H2, the sole reactive process observed over the collision energy range from 0.37 to 1.40 eV, has been studied using the crossed beam technique and density-functional theory (DFT) calculations. The center of mass flux distributions of the product C2H- ions at three different energies are highly asymmetric, characteristic of a direct process occurring on a time scale much less than a rotational period of any transient intermediate. The maxima in the flux distributions correspond to product velocities and directions close to those of the precursor acetylene reactants. The reaction quantitatively transforms the entire exothermicity into internal excitation of the products, consistent with an energy release motif in which the proton is transferred early, in a configuration in which the forming bond is extended. This picture is supported by DFT calculations showing that the first electrostatically bound intermediate on the reaction pathway is the productlike C2H- H2O species. Most of the incremental translational energy in the two higher collision energy experiments appears in product translational energy, and provides an example of induced repulsive energy release characteristic of the heavy+light-heavy mass combination.  相似文献   

2.
The reactions between OH+(3Sigma-) and C2H2 have been studied using crossed ion and molecular beams and density functional theory calculations. Both charge transfer and proton transfer channels are observed. Products formed by carbon-carbon bond cleavage analogous to those formed in the isoelectronic O(3P)+C2H2 reaction, e.g., 3CH2 + HCO+, are not observed. The center of mass flux distributions of both product ions at three different energies are highly asymmetric, with maxima close to the velocity and direction of the precursor acetylene beam, characteristic of direct reactions. The internal energy distributions of the charge transfer products are independent of collision energy and are peaked at the reaction exothermicity, inconsistent with either the existence of favorable Franck-Condon factors or energy resonance. In proton transfer, almost the entire reaction exothermicity is transformed into product internal excitation, consistent with mixed energy release in which the proton is transferred with both the breaking and forming bonds extended. Most of the incremental translational energy in the two higher-energy experiments appears in product translational energy, providing an example of induced repulsive energy release.  相似文献   

3.
The hydride transfer reaction between OD+ and C3H6 has been studied experimentally and theoretically over the center of mass collision energy range from 0.21 to 0.92 eV using the crossed beam technique and density functional theory calculations. The center of mass flux distributions of the product ions at three different energies are highly asymmetric, with maxima close to the velocity and direction of the precursor propylene beam, characteristic of direct reactions. In the hydride transfer process, the entire reaction exothermicity is transformed into product internal excitation, consistent with mixed energy release in which the hydride ion is transferred with both the breaking and forming bonds extended. At higher collision energies, at least 85% of the incremental translational energy appears in product translation, providing a clear example of induced repulsive energy release. Compared to the related reaction of OD+ with C2H4, reaction along the pathway initiated by addition of OD+ to the C=C bond in propylene has a critical bottleneck caused by the torsional motion of the methyl substituent on the double bond. This bottleneck suppresses reaction through an intermediate complex in favor of direct hydride abstraction. Hydride abstraction appears to be a sequential process initiated by electron transfer in the triplet manifold, followed by rapid intersystem crossing and subsequent hydrogen atom transfer to form ground state allyl cation and HOD.  相似文献   

4.
The product state-resolved dynamics of the reactions H+H(2)O/D(2)O-->OH/OD((2)Pi(Omega);v',N',f )+H(2)/HD have been explored at center-of-mass collision energies around 1.2, 1.4, and 2.5 eV. The experiments employ pulsed laser photolysis coupled with polarized Doppler-resolved laser induced fluorescence detection of the OH/OD radical products. The populations in the OH spin-orbit states at a collision energy of 1.2 eV have been determined for the H+H(2)O reaction, and for low rotational levels they are shown to deviate from the statistical limit. For the H+D(2)O reaction at the highest collision energy studied the OD((2)Pi(3/2),v'=0,N'=1,A') angular distributions show scattering over a wide range of angles with a preference towards the forward direction. The kinetic energy release distributions obtained at 2.5 eV also indicate that the HD coproducts are born with significantly more internal excitation than at 1.4 eV. The OD((2)Pi(3/2),v'=0,N'=1,A') angular and kinetic energy release distributions are almost identical to those of their spin-orbit excited OD((2)Pi(1/2),v'=0,N'=1,A') counterpart. The data are compared with previous experimental measurements at similar collision energies, and with the results of previously published quasiclassical trajectory and quantum mechanical calculations employing the most recently developed potential energy surface. Product OH/OD spin-orbit effects in the reaction are discussed with reference to simple models.  相似文献   

5.
We have measured absolute cross section for the reaction of ground-state O(+) with ammonia at collision energies in the range from near-thermal to approximately 15 eV, using the guided-ion beam (GIB) method. Measurements were also performed using ammonia-d3 to aid in mass assignments. The reaction is dominated at low collision energies by charge transfer; however, the cross section for this exothermic channel is rather small, decreasing sharply with energy from approximately 40 A(2) for normal ammonia at near-thermal energies and leveling off at 3.7 A(2) above 6 eV; the cross section is slightly smaller for ammonia-d3. Other channels, corresponding to the production of NH2(+) and NO(+), and possibly OH(+), were detected. The NO(+) channel, although nominally exothermic, is very small and exhibits a threshold at approximately 7 eV. Product recoil velocity distributions were also determined at selected collision energies, using GIB time-of-flight methods.  相似文献   

6.
Despite the fact that the transition structure of the gas phase S(N)2 reaction H(2)O + HOOH(2)(+)--> HOOH(2)(+)+ H(2)O is well below the reactants in potential energy, the reaction has not yet been observed by experiment. Variational transition state RRKM theory reveals a strong preference for the competing proton transfer reaction H(2)O + HOOH(2)(+)--> H(3)O(+)+ HOOH due to entropy factors. Born-Oppenheimer reaction dynamics simulations confirm these results. However, by increasing the collision energy to around 7.5 eV the probability for nucleophilic substitution increases relative to proton transfer. These observations are explained by the presence of the key common intermediate HOO(H)[dot dot dot]H-OH(2)(+) which leads to effective proton transfer, but can be avoided with increasing collision energy. However, the S(N)2 probability remains below 0.2 since successful passage through the TS requires optimum initial orientation of the reactants, excitation of the relative translational motion and good phase correlation between the O-O vibration and the motion of the incoming water.  相似文献   

7.
A detailed state-to-state dynamics study was performed to analyze the effects of vibrational excitation and translational energy on the dynamics of the Cl((2)P) + NH(3)(v) gas-phase reaction, effects which are connected to such issues as mode selectivity and Polanyi's rules. This reaction evolves along two deep wells in the entry and exit channels. At low and high collision energies quasi-classical trajectory calculations were performed on an analytical potential energy surface previously developed by our group, together with a simplified model surface in which the reactant well is removed to analyze the influence of this well. While at high energy the independent vibrational excitation of all NH(3)(v) modes increases the reactivity by a factor ≈1.1-2.9 with respect to the vibrational ground-state, at low energy the opposite behaviour is found (factor ≈ 0.4-0.9). However, when the simplified model surface is used at low energy the independent vibrational excitation of all NH(3)(v) modes increases the reactivity, showing that the behaviour at low energies is a direct consequence of the existence of the reactant well. Moreover, we find that this reaction exhibits negligible mode selectivity, first because the independent excitation of the N-H symmetric and asymmetric stretch modes, which lie within 200 cm(-1) of each other, leads to reactions with similar reaction probabilities, and second because the vibrational excitation of the reactive N-H stretch mode is only partially retained in the products. For this "late transition-state" reaction, we also find that vibrational energy is more effective in driving the reaction than an equivalent amount of energy in translation, consistent with an extension of Polanyi's rules. Finally, we find that the non-reactive events, Cl((2)P)+NH(3)(v) → Cl((2)P) + NH(3)(v'), lead to a great number of populated vibrational states in the NH(3)(v') product, even starting from the NH(3)(v = 0) vibrational ground state at low energies, which is unphysical in a quantum world. This result is interpreted on the basis of non-conservation of the ZPE per mode.  相似文献   

8.
The reactions between O(-) and C(2)H(2) have been studied using the crossed-beam technique and density-functional theory (DFT) calculations in the collision energy range from 0.35 to 1.5 eV (34-145 kJmol). Both proton transfer and C-O bond formation are observed. The proton transfer channel forming C(2)H(-) is the dominant pathway. The center-of-mass flux distributions of the C(2)H(-) product ions are highly asymmetric, with maxima close to the velocity and direction of the precursor acetylene beam, characteristic of direct reactions. The reaction quantitatively transforms the entire reaction exothermicity into internal excitation of the products, consistent with mixed energy release in which the proton is transferred in a configuration in which both the breaking and the forming bonds are extended. The C-O bond formation channel producing HC(2)O(-) displays a distinctive kinematic picture in which the product distribution switches from predominantly forward scattering with a weak backward peak to sideways scattering as the collision energy increases. At low collision energies, the reaction occurs through an intermediate that lives a significant fraction of a rotational period. The asymmetry in the distribution leads to a lifetime estimate of 600 fs, in reasonable agreement with DFT calculations showing that hydrogen-atom migration is rate limiting. At higher collision energies, the sideways-scattered products arise from repulsive energy release from a bent transition state.  相似文献   

9.
The endothermic proton transfer reaction, H2+(upsilon+)+He-->HeH+ + H(DeltaE=0.806 eV), is investigated over a broad range of reactant vibrational levels using high-resolution vacuum ultraviolet to prepare reactant ions either through excitation of autoionization resonances, or using the pulsed-field ionization-photoelectron-secondary ion coincidence (PFI-PESICO) approach. In the former case, the translational energy dependence of the integral reaction cross sections are measured for upsilon+=0-3 with high signal-to-noise using the guided-ion beam technique. PFI-PESICO cross sections are reported for upsilon+=1-15 and upsilon+=0-12 at center-of-mass collision energies of 0.6 and 3.1 eV, respectively. All ion reactant states selected by the PFI-PESICO scheme are in the N+=1 rotational level. The experimental cross sections are complemented with quasiclassical trajectory (QCT) calculations performed on the ab initio potential energy surface provided by Palmieri et al. [Mol. Phys. 98, 1839 (2000)]. The QCT cross sections are significantly lower than the experimental results near threshold, consistent with important contributions due to resonances observed in quantum scattering studies. At total energies above 2 eV, the QCT calculations are in excellent agreement with the present results. PFI-PESICO time-of-flight (TOF) measurements are also reported for upsilon+=3 and 4 at a collision energy of 0.6 eV. The velocity inverted TOF spectra are consistent with the prevalence of a spectator-stripping mechanism.  相似文献   

10.
The excitation function for the reaction, O(3P)+CH4-->H+OCH3, has been measured in a crossed molecular beams experiment and determined with direct dynamics calculations that use the quasiclassical trajectory method in conjunction with a recently developed semiempirical Hamiltonian. Good agreement is found between experiment and theory, enabling us to address two fundamental issues for the O(3P)+CH4 reaction that arise for all O(3P)+saturated hydrocarbon reactions: (1) the importance of triplet excited states that correlate adiabatically to ground-state reactants and products and (2) the importance of intersystem crossing processes involving the lowest singlet surface [corresponding to reaction with O(1D)]. Our results indicate that the first excited triplet surface contributes substantially to the cross section when the collision energy exceeds the reaction barrier (approximately 2 eV) by more than 0.5 eV. Although triplet-singlet crossings may occur at all energies, we have found that their effect on the excitation function is negligible for the collision energies studied-up to 1.5 eV above threshold.  相似文献   

11.
We have used oxygen Rydberg time-of-flight spectroscopy to carry out a crossed molecular beam study of the CN + O2 reaction at collision energies of 3.1 and 4.1 kcal/mol. The O(3P2) products were tagged by excitation to high-n Rydberg levels and subsequently field ionized at a detector. The translational energy distributions were broad, indicating that the NCO is formed with a wide range of internal excitation, and the angular distribution was forward-backward symmetric, indicating the participation of NCOO intermediates with lifetimes comparable to or longer than their rotational periods. Rice-Ramsperger-Kassel-Marcus modeling of the dissociation of NCOO to NCO + O suggests that Do(NC-OO) > or = 38 kcal/mol, which is consistent with several theoretical calculations. Implications for the competing CO + NO channel are discussed.  相似文献   

12.
A Born-Oppenheimer direct dynamics simulation of the O(+) + CH(4) reaction dynamics at hyperthermal energies has been carried out with the PM3 (ground quartet state) Hamiltonian. Calculations were performed at various collision energies ranging from 0.5 to 10 eV with emphasis on high energy collisions where this reaction is relevant to materials erosion studies in low Earth orbit and geosynchronous Earth orbit. Charge transfer to give CH(4)(+) is the dominant channel arising from O(+) + CH(4) collisions in this energy range, but most of the emphasis in our study is on collisions that lead to reaction. All energetically accessible reaction channels were found, including products containing carbon-oxygen bonds, which is in agreement with the results of recent experiments. After correcting for compensating errors in competing reaction channels, our excitation functions show quantitative agreement with experiment (for which absolute magnitudes of cross sections are available) at high collision energies (several eV). More detailed properties, such as translational and angular distributions, show qualitative agreement. The opacity function reveals a high selectivity for producing OH(+) at high impact parameters, CH(3)(+)/CH(2)(+)/H(2)O(+) at intermediate impact parameters, and H(2)CO(+)/HCO(+)/CO(+) at small impact parameters. Angular distributions for CH(3)(+)/CH(2)(+)/OH(+) are forward scattered at high collision energies which implies the importance of direct reaction mechanisms, while reaction complexes play an important role at lower energies, especially for the H(2)O(+) product. Finally, we find that the nominally spin-forbidden product CH(3)(+) + OH can be produced by a spin-allowed pathway that involves the formation of the triplet excited product CH(3)(+)(?(3)E). This explains why CH(3)(+) can have a high cross section, even at very low collision energies. The results of this work suggest that the PM3 method may be applied directly to the study of O(+) reactions with small alkane molecules and polymer surfaces.  相似文献   

13.
An incorporation of ND(3) into protonated ammonia cluster ions NH(4)(+)(NH(3))(n-1) (n=3-9), together with a dissociation of the cluster ions, was observed in the collision of the cluster with ND(3) at collision energies ranging from 0.04 to 1.4 eV in the center-of-mass frame. The branching fractions of the cluster ion species produced in the reactions were obtained as a function of the collision energy. The branching fractions of the incorporation products were successfully explained in terms of the Rice-Ramsperger-Kassel (RRK) theory at collision energies lower than the binding energy of the cluster ion. In addition, the internal energy distributions of the parent cluster ions were determined, and found to be in good agreement with those predicted using the evaporative ensemble model. In incorporations at collision energies lower than the binding energy of the cluster ion, all of the collision energy was transferred to the internal energy of the cluster ions; subsequently, an evaporation of ammonia molecules occurred in an equilibrium process after a complete energy redistribution in the clusters. In contrast, at collision energies higher than the binding energy of the cluster ion, a release of an ammonia molecule from the incorporation products occurred in a nonequilibrium process. The transition from the complex mode to the direct mode in the incorporation was observed at collision energies approximately equal to the binding energy. On the other hand, the collision energy dependence of the cross sections for the dissociation and for a nonreactive collision were estimated by a RRK simulation in which the collision energy transfer was interpreted by using the classical hard-sphere collision model. A relationship between reactivity and reaction modes in the collision of NH(4)(+)(NH(3))(4) with ND(3) is discussed via a comparison of the experimental results with the RRK simulation.  相似文献   

14.
Reactions of HOD(+) with N(2) have been studied for HOD(+) in its ground state and with one quantum of excitation in each of its vibrational modes: (001)--predominately OH stretch, 0.396 eV, (010)--bend, 0.153 eV, and (100)--predominately OD stretch, 0.293 eV. Integral cross sections and product recoil velocities were recorded for collision energies from threshold to 4 eV. The cross sections for both H(+) and D(+) transfer rise slowly from threshold with increasing collision energy; however, all three vibrational modes enhance reaction much more strongly than equivalent amounts of collision energy and the enhancements remain large even at high collision energy, where the vibration contributes less than 10% of the total energy. Excitation of the OH stretch enhances H(+) transfer by a factor of ~5, but the effect on D(+) transfer is only slightly larger than that from an equivalent increase in collision energy, and smaller than the effect from the much lower energy bend excitation. Similarly, OD stretch excitation strongly enhances D(+) transfer, but has essentially no effect beyond that of the additional energy on H(+) transfer. The effects of the two stretch vibrations are consistent with the expectation that stretching the bond that is broken in the reaction puts momentum in the correct coordinate to drive the system into the exit channel. From this perspective it is quite surprising that bend excitation also results in large (factor of 2) enhancements of both H(+) and D(+) transfer channels, such that its effect on the total cross section at collision energies below ~2 eV is comparable to those from the two stretch modes, even though the bend excitation energy is much smaller. For collision energies above ~2 eV, the vibrational effects become approximately proportional to the vibrational energy, though still much larger than the effects of equivalent addition of collision energy. Measurements of the product recoil velocity distributions show that reaction is direct at all collision energies, with roughly half the products in a sharp peak corresponding to stripping dynamics and half with a broad and approximately isotropic recoil velocity distribution. Despite the large effects of vibrational excitation on reactivity, the effects on recoil dynamics are small, indicating that vibrational excitation does not cause qualitative changes in the reaction mechanism or in the distribution of reactive impact parameters.  相似文献   

15.
The dynamics of O(3P) + CO collisions at a hyperthermal collision energy near 80 kcal mol-1 have been studied with a crossed molecular beams experiment and with quasi-classical trajectory calculations on computed potential energy surfaces. In the experiment, a rotatable mass spectrometer detector was used to monitor inelastically and reactively scattered products as a function of velocity and scattering angle. From these data, center-of-mass (c.m.) translational energy and angular distributions were derived for the inelastic and reactive channels. Isotopically labeled C18O was used to distinguish the reactive channel (16O + C18O 16OC + 18O) from the inelastic channel (16O + C18O 16O + C18O). The reactive 16OC molecules scattered predominantly in the forward direction, i.e., in the same direction as the velocity vector of the reagent O atoms in the c.m. frame. The c.m. translational energy distribution of the reactively scattered 16OC and 18O was very broad, indicating that 16OC is formed with a wide range of internal energies, with an average internal excitation of approximately 40% of the available energy. The c.m. translational energy distribution of the inelastically scattered C18O and 16O products indicated that an average of 15% of the collision energy went into internal excitation of C18O, although a small fraction of the collisions transferred nearly all the collision energy into internal excitation of C18O. The theoretical calculations, which extend previously published results on this system, predict c.m. translational energy and angular distributions that are in near quantitative agreement with the experimentally derived distributions. The theoretical calculations, thus validated by the experimental results, have been used to derive internal state distributions of scattered CO products and to probe in detail the interactions that lead to the observed dynamical behavior.  相似文献   

16.
Reactions of protonated water clusters, H(H(2)O)(n) (+) (n=1-4) with D(2)O and their "mirror" reactions, D(D(2)O)(n) (+) (n=1-4) with H(2)O, are studied using guided-ion beam mass spectrometry. Absolute reaction cross sections are determined as a function of collision energy from thermal energy to over 10 eV. At low collision energies, we observe reactions in which H(2)O and D(2)O molecules are interchanged and reactions where H-D exchange has occurred. As the collision energy is increased, the H-D exchange products decrease and the water exchange products become dominant. At high collision energies, processes in which one or more water molecules are lost from the reactant ions become important, with simple collision-induced dissociation processes, i.e., those without H-D exchange, being dominant. Threshold energies of endothermic channels are measured and used to determine binding energies of the proton bound complexes, which are consistent with those determined by thermal equilibrium measurements and previous collision-induced dissociation studies. A kinetic scheme that relies only on the ratio of isomerization and dissociation rate constants successfully accounts for the kinetic energy dependence observed in the branching ratios for H-D and water exchange products in all systems. Rice-Ramsperger-Kassel-Marcus theory and ab initio calculations confirm the feasibility and establish the details of this kinetic model.  相似文献   

17.
Recent computational studies on the addition of ammonia (NH3) to the Al3O3- cluster anion [A. Guevara-Garcia, A. Martinez, and J. V. Ortiz, J. Chem. Phys. 122, 214309 (2005)] have motivated experimental and additional computational studies, reported here. Al3O3- is observed to react with a single NH3 molecule to form the Al3O3NH3- ion in mass spectrometric studies. This is in contrast to similarly performed studies with water, in which the Al3O5H4- product was highly favored. However, the anion PE spectrum of the ammoniated species is very similar to that of Al3O4H2-. The adiabatic electron affinity of Al3O3NH3 is determined to be 2.35(5) eV. Based on comparison between the spectra and calculated electron affinities, it appears that NH3 adds dissociatively to Al3O3-, suggesting that the time for the Al3O3-NH3 complex to either overcome or tunnel through the barrier to proton transfer (which is higher for NH3 than for water) is short relative to the time for collisional cooling in the experiment.  相似文献   

18.
19.
The charge transfer and deuterium ion transfer reactions between D(2)O(+) and C(2)H(4) have been studied using the crossed beam technique at relative collision energies below one electron volt and by density functional theory (DFT) calculations. Both direct and rearrangement charge transfer processes are observed, forming C(2)H(4) (+) and C(2)H(3)D(+), respectively. Independent of collision energy, deuterium ion transfer accounts for approximately 20% of the reactive collisions. Between 22 and 36 % of charge transfer collisions occur with rearrangement. In both charge transfer processes, comparison of the internal energy distributions of products with the photoelectron spectrum of C(2)H(4) shows that Franck-Condon factors determine energy disposal in these channels. DFT calculations provide evidence for transient intermediates that undergo H/D migration with rearrangement, but with minimal modification of the product energy distributions determined by long range electron transfer. The cross section for charge transfer with rearrangement is approximately 10(3) larger than predicted from the Rice-Ramsperger-Kassel-Marcus isomerization rate in transient complexes, suggesting a nonstatistical mechanism for H/D exchange. DFT calculations suggest that reactive trajectories for deuterium ion transfer follow a pathway in which a deuterium atom from D(2)O(+) approaches the pi-cloud of ethylene along the perpendicular bisector of the C-C bond. The product kinetic energy distributions exhibit structure consistent with vibrational motion of the D-atom in the bridged C(2)H(4)D(+) product perpendicular to the C-C bond. The reaction quantitatively transforms the reaction exothermicity into internal excitation of the products, consistent with mixed energy release in which the deuterium ion is transferred in a configuration in which both the breaking and the forming bonds are extended.  相似文献   

20.
We have measured the absolute cross sections for reactions of Xe(+) and Xe(2+) with NH(3) at collision energies in the range from near-thermal to ~34 and ~69?eV, respectively. For Xe(+), the cross section for charge transfer, the only exothermic channel, decreases from ~200A?(2) below 0.1 eV to ~12A?(2) at the highest energies studied. The production of NH(3) (+) is the only channel observed below 5 eV, above which a small amount of NH(2) (+) is also formed. In Xe(2+) reactions, the main products observed are NH(3) (+) and NH(2) (+). The charge transfer cross section decreases monotonically from ~80 to ~6A?(2) over the studied energy range. The NH(2) (+) cross section is similar to the charge transfer cross section at the lowest energies, and exhibits a second component above 0.4 eV, with a maximum of 65A?(2) at 0.7 eV, above which the cross section decreases to ~30A?(2) at the highest energies studied. At energies above 10 eV, a small amount of NH(+) is also observed in Xe(2+) collisions. Product recoil velocity distributions were determined at selected collision energies, using guided-ion beam time-of-flight methods.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号