首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In this paper, the numerical solution of the generalized Kuramoto-Sivashinsky equation is presented by meshless method of lines (MOL). In this method the spatial derivatives are approximated by radial basis functions (RBFs) giving an edge over finite difference method (FDM) and finite element method (FEM) because no mesh is required for discretization of the problem domain. Only a set of scattered nodes is required to approximate the solution. The numerical results in comparison with exact solution using different radial basis functions (RBFs) prove the efficiency and accuracy of the method.  相似文献   

2.
We propose a local mesh‐free method for the Bates–Scott option pricing model, a 2D partial integro‐differential equation (PIDE) arising in computational finance. A Wendland radial basis function (RBF) approach is used for the discretization of the spatial variables along with a linear interpolation technique for the integral operator. The resulting set of ordinary differential equations (ODEs) is tackled via a time integration method. A potential advantage of using RBFs is the small number of discrete equations that need to be solved. Computational experiments are presented to illustrate the performance of the contributed approach.  相似文献   

3.
In this paper, a high-order exponential (HOE) scheme is developed for the solution of the unsteady one-dimensional convection-diffusion equation. The present scheme uses the fourth-order compact exponential difference formula for the spatial discretization and the (2,2) Padé approximation for the temporal discretization. The proposed scheme achieves fourth-order accuracy in temporal and spatial variables and is unconditionally stable. Numerical experiments are carried out to demonstrate its accuracy and to compare it with analytic solutions and numerical results established by other methods in the literature. The results show that the present scheme gives highly accurate solutions for all test examples and can get excellent solutions for convection dominated problems.  相似文献   

4.
针对三维非稳态对流扩散反应方程,构造了一种高精度紧致有限差分格式,对空间的离散采用四阶紧致差分方法,对时间的离散采用Taylor级数展开和余项修正技术,所提格式在时间上的精度为二阶、在空间上的精度为四阶。利用Fourier稳定性分析法证明了该格式是无条件稳定的。最后给出数值算例验证了理论结果。  相似文献   

5.
In this research, a class of radial basis functions (RBFs) ENO/WENO schemes with a Lax–Wendroff time discretization procedure, named as RENO/RWENO‐LW, for solving Hamilton–Jacobi (H–J) equations is designed. Particularly the multi‐quadratic RBFs are used. These schemes enhance the local accuracy and convergence by locally optimizing the shape parameters. Comparing with the original WENO with Lax–Wendroff time discretization schemes of Qiu for HJ equations, the new schemes provide more accurate reconstructions and sharper solution profiles near strong discontinuous derivative. Also, the RENO/RWENO‐LW schemes are easy to implement in the existing original ENO/WENO code. Extensive numerical experiments are considered to verify the capability of the new schemes.  相似文献   

6.
Strong form collocation with radial basis approximation, called the radial basis collocation method (RBCM), is introduced for the numerical solution of elastodynamics. In this work, the proper weights for the boundary collocation equations to achieve the optimal convergence in elastodynamics are first derived. The von Neumann method is then introduced to investigate the dispersion characteristics of the semidiscrete RBCM equation. Very small dispersion error (< 1%) in RBCM can be achieved compared to linear and quadratic finite elements. The stability conditions of the RBCM spatial discretization in conjunction with the central difference temporal discretization are also derived. We show that the shape parameter of the radial basis functions not only has strong influence on the dispersion errors, it also has profound influence on temporal stability conditions in the case of lumped mass. Further, our stability analysis shows that, in general, a larger critical time step can be used in RBCM with central difference temporal discretization than that for finite elements with the same temporal discretization. Our analysis also suggests that although RBCM with lumped mass allows a much larger critical time step than that of RBCM with consistent mass, the later offers considerably better accuracy and should be considered in the transient analysis. © 2012 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq 2013  相似文献   

7.
This paper proposes a new interval uncertainty analysis method for static response of structures with unknown-but-bounded parameters by using radial basis functions (RBFs). Recently, collocation methods (CM) which apply orthogonal polynomials are proposed to solve interval uncertainty quantification problems with high accuracy. These methods overcome the drawback of Taylor expansion based methods, which are prone to overestimate the response bounds. However, the form of orthogonal basis functions is very complicated in higher dimensions, which may restrict their application when there exist relatively more interval parameters. In contrast to orthogonal basis function, the form of radial basis function (RBF) is simple and stays the same in whatever dimension. This study introduces RBFs into interval analysis of structures and provides a relatively simple approach to solve structural response bounds accurately. A surrogate model of real structural response with respect to interval parameters is constructed with the RBFs. The extrema of the surrogate model can be calculated by some auxiliary methods. The static response bounds can be obtained accordingly. Two numerical examples are used to verify the proposed method. The engineering application of the proposed method is performed by a center wing-box. The results prove the effectiveness of the proposed method.  相似文献   

8.
The method of approximate particular solutions (MAPS) was first proposed by Chen et al. in Chen, Fan, and Wen, Numer Methods Partial Differential Equations, 28 (2012), 506–522. using multiquadric (MQ) and inverse multiquadric radial basis functions (RBFs). Since then, the closed form particular solutions for many commonly used RBFs and differential operators have been derived. As a result, MAPS was extended to Matérn and Gaussian RBFs. Polyharmonic splines (PS) has rarely been used in MAPS due to its conditional positive definiteness and low accuracy. One advantage of PS is that there is no shape parameter to be taken care of. In this article, MAPS is modified so PS can be used more effectively. In the original MAPS, integrated RBFs, so called particular solutions, are used. An additional integrated polynomial basis is added when PS is used. In the modified MAPS, an additional polynomial basis is directly added to the integrated RBFs without integration. The results from the modified MAPS with PS can be improved by increasing the order of PS to a certain degree or by increasing the number of collocation points. A polynomial of degree 15 or less appeared to be working well in most of our examples. Other RBFs such as MQ can be utilized in the modified MAPS as well. The performance of the proposed method is tested on a number of examples including linear and nonlinear problems in 2D and 3D. We demonstrate that the modified MAPS with PS is, in general, more accurate than other RBFs for solving general elliptic equations.© 2017 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq 33: 1839–1858, 2017  相似文献   

9.
For nonlinear reduced‐order models (ROMs), especially for those with high‐order polynomial nonlinearities or nonpolynomial nonlinearities, the computational complexity still depends on the dimension of the original dynamical system. To overcome this issue, we develop an efficient finite element (FE) discretization algorithm for nonlinear ROMs. The proposed approach approximates the nonlinear function by its FE interpolant, which makes the inner product evaluations in generating the nonlinear terms computationally cheaper than that in the standard FE discretization. Due to the separation of spatial and temporal variables in the FE interpolation, the discrete empirical interpolation method (DEIM) can be directly applied on the nonlinear functions in the same manner as that in the finite difference setting. Therefore, the main computational hurdles for applying the DEIM in the FE context are conquered. We also establish a rigorous asymptotic error estimation, which shows that the proposed approach achieves the same accuracy as that of the standard FE method under certain smoothness assumptions of the nonlinear functions. Several numerical tests are presented to validate the proposed method and verify the theoretical results. © 2015 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq 31: 1713–1741, 2015  相似文献   

10.
We consider a parabolic interface problem which models the transport of a dissolved species in two-phase incompressible flow problems. Due to the so-called Henry interface condition the solution is discontinuous across the interface. We use an extended finite element space combined with a method due to Nitsche for the spatial discretization of this problem and derive optimal discretization error bounds for this method. For the time discretization a standard θ-scheme is applied. Results of numerical experiments are given that illustrate the convergence properties of this discretization.  相似文献   

11.
In this article, a fast singly diagonally implicit Runge–Kutta method is designed to solve unsteady one‐dimensional convection diffusion equations. We use a three point compact finite difference approximation for the spatial discretization and also a three‐stage singly diagonally implicit Runge–Kutta (RK) method for the temporal discretization. In particular, a formulation evaluating the boundary values assigned to the internal stages for the RK method is derived so that a phenomenon of the order of the reduction for the convergence does not occur. The proposed scheme not only has fourth‐order accuracy in both space and time variables but also is computationally efficient, requiring only a linear matrix solver for a tridiagonal matrix system. It is also shown that the proposed scheme is unconditionally stable and suitable for stiff problems. Several numerical examples are solved by the new scheme and the numerical efficiency and superiority of it are compared with the numerical results obtained by other methods in the literature. © 2013 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq 30: 788–812, 2014  相似文献   

12.
We consider a conservative nonlinear multigrid method for the Cahn–Hilliard equation with a variable mobility of a model for phase separation in a binary mixture. The method uses the standard finite difference approximation in spatial discretization and the Crank–Nicholson semi-implicit scheme in temporal discretization. And the resulting discretized equations are solved by an efficient nonlinear multigrid method. The continuous problem has the conservation of mass and the decrease of the total energy. It is proved that these properties hold for the discrete problem. Also, we show the proposed scheme has a second-order convergence in space and time numerically. For numerical experiments, we investigate the effects of a variable mobility.  相似文献   

13.
Due to the use of dual cover systems, i.e., the mathematical cover and the physical cover, the numerical manifold method (NMM) is able to solve physical problems with boundary-inconsistent meshes. Meanwhile, n-gons (n>4) are very impressive, due to their greater flexibility in discretization, less sensitivity to volumetric and shear locking, and better suitability for complex microstructures simulation. In this paper, the NMM, combined with Wachspress-type hexagonal elements, is developed to solve 2D transient heat conduction problems. Based on the governing equations, the NMM temperature approximation and the modified variational principle, the NMM discrete formulations are deduced. The solution strategy to time-dependent global equations and the spatial integration scheme are presented. The advantages of the proposed approach in both discretization and accuracy are demonstrated through several typical examples with increasing complexity. The extension of polygonal elements in unsteady thermal analysis within the NMM is realized.  相似文献   

14.
This paper examines the numerical solution of the transient nonlinear coupled Burgers’ equations by a Local Radial Basis Functions Collocation Method (LRBFCM) for large values of Reynolds number (Re) up to 103. The LRBFCM belongs to a class of truly meshless methods which do not need any underlying mesh but works on a set of uniform or random nodes without any a priori node to node connectivity. The time discretization is performed in an explicit way and collocation with the multiquadric radial basis functions (RBFs) are used to interpolate diffusion-convection variable and its spatial derivatives on decomposed domains. Five nodded domains of influence are used in the local support. Adaptive upwind technique [1] and [54] is used for stabilization of the method for large Re in the case of mixed boundary conditions. Accuracy of the method is assessed as a function of time and space discretizations. The method is tested on two benchmark problems having Dirichlet and mixed boundary conditions. The numerical solution obtained from the LRBFCM for different value of Re is compared with analytical solution as well as other numerical methods [15], [47] and [49]. It is shown that the proposed method is efficient, accurate and stable for flow with reasonably high Reynolds numbers.  相似文献   

15.
We propose a spectral collocation method for the numerical solution of the time‐dependent Schrödinger equation, where the newly developed nonpolynomial functions in a previous study are used as basis functions. Equipped with the new basis functions, various boundary conditions can be imposed exactly. The preferable semi‐implicit time marching schemes are employed for temporal discretization. Moreover, the new basis functions build in a free parameter λ intrinsically, which can be chosen properly so that the semi‐implicit scheme collapses to an explicit scheme. The method is further applied to linear Schrödinger equation set in unbounded domain. The transparent boundary conditions are constructed for time semidiscrete scheme of the linear Schrödinger equation. We employ spectral collocation method using the new basis functions for the spatial discretization, which allows for the exact imposition of the transparent boundary conditions. Comprehensive numerical tests both in bounded and unbounded domain are performed to demonstrate the attractive features of the proposed method.  相似文献   

16.
A fully Sinc–Galerkin method for solving advection–diffusion equations subject to arbitrary radiation boundary conditions is presented. This procedure gives rise to a discretization, which has its most natural representation in the form of a Sylvester system where the coefficient matrix for the temporal discretization is full. The word “full” often implies a computationally more complex method compared to, for example, temporal marching. In a comparison of time-marching versus this sinc-temporal procedure, the Sylvester formulation defines a common framework within which these procedures can be evaluated. This framework has been included in the introduction to illustrate an efficiency measure for either method. Similar remarks with regard to fullness versus sparseness in the Sylvester formulation apply when the spatial discretization is spectral or, for example, differencing. Although it is indicated how this sinc-temporal method can be combined with alternative spatial discretizations, the natural affinity between sinc methods for space and time discretizations motivate carrying out the numerical illustrations using the sinc basis in each. © 1995 John Wiley & Sons, Inc.  相似文献   

17.
This paper presents a shifted fractional‐order Jacobi orthogonal function (SFJF) based on the definition of the classical Jacobi polynomial. A new fractional integral operational matrix of the SFJF is presented and derived. We propose the spectral Tau method, in conjunction with the operational matrices of the Riemann–Liouville fractional integral for SFJF and derivative for Jacobi polynomial, to solve a class of time‐fractional partial differential equations with variable coefficients. In this algorithm, the approximate solution is expanded by means of both SFJFs for temporal discretization and Jacobi polynomials for spatial discretization. The proposed tau scheme, both in temporal and spatial discretizations, successfully reduced such problem into a system of algebraic equations, which is far easier to be solved. Numerical results are provided to demonstrate the high accuracy and superiority of the proposed algorithm over existing ones. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

18.
In this article, we study the convergence analysis for the initial and boundary value problem of parabolic equations on a disk with singular solutions. It is assumed that the exact solution performs singular properties that its derivatives go to infinity at the boundary of the disk. We propose a fully implicit time-stepping numerical scheme. A stretching polynomial-like function with a parameter is used to construct a local grid refinement. Over the nonuniform partition, we combine the Swartztrauber-Sweet scheme and the backward Euler method in spatial and temporal discretization, respectively. We carry out convergence analysis and analyze the effects of the parameter. It is shown that our numerical scheme is of first order accuracy for temporal discretization and of almost second order accuracy for spatial discretization. Numerical experiments are performed to illustrate our analysis results and show that there exists an optimal value for the parameter to obtain a best approximate solution.  相似文献   

19.
We use Radial Basis Functions (RBFs) to reconstruct smooth surfaces from 3D scattered data. An object's surface is defined implicitly as the zero set of an RBF fitted to the given surface data. We propose improvements on the methods of surface reconstruction with radial basis functions. A sparse approximation set of scattered data is constructed by reducing the number of interpolating points on the surface. We present an adaptive method for finding the off-surface normal points. The order of the equation decreases greatly as the number of the off-surface constraints reduces gradually. Experimental results are provided to illustrate that the proposed method is robust and may draw beautiful graphics.  相似文献   

20.
In this paper, we present a two-grid discretization scheme for semilinear parabolic integro-differential equations by $H^{1}$-Galerkin mixed finite element methods. We use the lowest order Raviart-Thomas mixed finite elements and continuous linear finite element for spatial discretization, and backward Euler scheme for temporal discretization. Firstly, a priori error estimates and some superclose properties are derived. Secondly, a two-grid scheme is presented and its convergence is discussed. In the proposed two-grid scheme, the solution of the nonlinear system on a fine grid is reduced to the solution of the nonlinear system on a much coarser grid and the solution of two symmetric and positive definite linear algebraic equations on the fine grid and the resulting solution still maintains optimal accuracy. Finally, a numerical experiment is implemented to verify theoretical results of the proposed scheme. The theoretical and numerical results show that the two-grid method achieves the same convergence property as the one-grid method with the choice $h=H^2$.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号