首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
It is well known that WO(3) interacts efficiently with H(2) gas in the presence of noble metals (such as Pd, Pt and Au) at elevated temperatures, changing its optical behaviors; and that its crystallinity plays an important role in these interactions. For the first time, we investigated the in situ Raman spectra changes of WO(3) films of different crystal phases, while incorporating Pd catalysts, at elevated temperatures in the presence of H(2). The Pd/WO(3) films were prepared using RF sputtering and subsequently annealed at 300, 400 and 500 °C in air in order to alter the dominant crystal phase. The films were then characterized using SEM, XRD, XPS, and both UV-VIS and Raman spectroscopy. In order to fundamentally study the process, the measurements were conducted when films were interacting with 1% H(2) in synthetic air at elevated sample temperatures (20, 60, 100 and 140 °C). We suggest that the changes of Raman spectra under such conditions to be mainly a function of the crystal phase, transforming from monoclinic to a mix phase of monoclinic and orthorhombic achieved via increasing the annealing temperature. The as-deposited sample consistently shows similar Raman spectra responses at different operating conditions upon H(2) exposure. However, increasing the annealing temperature to 500 °C tunes the optimum H(2) response operating temperature to 60 °C.  相似文献   

2.
Sodium (Na) doped Zinc oxide (ZnO) thin films have been deposited on a glass substrate by the sol–gel spin coating method. Effect of doping with various percentages of Na at a particular annealing temperature of 500 °C is studied. The samples were characterized by X-ray diffraction (XRD), micro-photoluminescence, Raman and Polarized Raman spectroscopy. The X-ray diffraction and micro-Raman spectroscopy confirmed the presence of Na substitution in zinc oxide and the wurtzite structure of the lattice is retained. An enhancement of resonant Raman scattering processes as well as longitudinal optical phonon overtones up to the fifth order were observed in the micro Raman spectra. The similar values of depolarization ratios obtained from Polarized Raman studies recommend no change in the symmetry. Photoluminescence showed a strong emission peak in the near UV at 3.2 eV and negligible visible emission.  相似文献   

3.
The photophysical properties of fullerene and/or phthalocyanine dyes embedded in ordered mesoporous silica films and the influence of annealing temperature on the nature of the immobilized dye molecules has been investigated using photoluminescence (PL) and diffuse reflectance (DR) studies. The PL and DR studies show that fullerene (C60) and/or zinc phthalocyanine (ZnPc) molecules incorporated into transparent mesoporous silica films, via either sol-gel or grafting routes, exist predominantly in monomeric form. Careful choice of annealing temperature, between 25 and 225 degrees C, can further enhance monomeric dispersion. For C60-containing films, monomeric dispersion of fullerene was observed for annealing temperatures up to 175 degrees C for sol-gel derived films and 225 degrees C for grafted films. Both sol-gel and grafted ZnPc-containing films showed evidence of monodispersed phthalocyanine for annealing temperatures up to 225 degrees C. In general, annealing temperatures in the range 125-175 degrees C were found to yield optimal monodispersion of the dye molecules. When both C60 and ZnPc were incorporated into the silica films, no evidence of interaction between the dyes, i.e., charge-transfer transitions or the formation of fullerene/phthalocyanine charge-transfer complexes, was observed. This suggests that embedded fullerene and phthalocyanine molecules may be used for the preparation of solid-state optical limiters, based on reverse saturable absorption, where monomeric dispersion of the dye molecules is important.  相似文献   

4.
Cubic, tetragonal and monoclinic Gd-doped zirconia nanoparticles with nominal composition GdxZr1?xO2 in the range 0 ≤ x ≤ 0.2, were prepared by annealing dried gels of Gd-containing zirconia at temperatures over the range between 450 and 1,300 °C. The synthesized zirconia-based nanoparticles with increased gadolinium load were characterized by X-ray powder diffraction, infrared and Raman spectroscopies, and transmission electron microscopy. The stabilization of the crystalline forms of Gd-doped ZrO2 solid solutions depends on the amount of Gd dopant and the annealing temperature. For low Gd loads in GdxZr1?xO2 being x < 0.05, the tetragonal form is the single phase up to 1,100 °C, whereas the monoclinic is the crystalline form detected up to 1,300 °C. Within the range of compositions 0.05 ≤ x < 0.1, is the tetragonal the only stabilized zirconia crystalline structure over the whole range of temperature up to 1,300 °C. For higher Gd-contents, in the range 0.1 ≤ x ≤ 0.2, is the cubic zirconia form the only stable phase for the whole range of annealing temperatures. Solid-state electrochemistry of the gadolinium-doped zirconia performed by the voltammetry of microparticles approach allowed distinguishing different electrochemical answers of Gd cation associated with slightly different local coordination surrounding of cations. Enantioselective electrocatalytic effect of monoclinic Gd-doped ZrO2 on the oxidation of l-(+)-tartaric acid and d-(?)-tartaric was also studied.  相似文献   

5.
Fourier transform infrared spectroscopy has been applied to study the thermal stability of multilayer Langmuir-Schaefer (LS) films of lysozyme deposited on silicon substrates. The study has confirmed previous structural findings that the LS protein films have a high thermal stability that is extended in a lysozyme multilayer up to 200 degrees C. 2D infrared analysis has been used here to identify the correlated molecular species during thermal denaturation. Asynchronous 2D spectra have shown that the two components of water, fully and not fully hydrogen bonded, in the high-wavenumber range (2800-3600 cm-1) are negatively correlated with the amine stretching band at 3300 cm-1. On the grounds of the 2D spectra the FTIR spectra have been deconvoluted using three main components, two for water and one for the amine. This analysis has shown that, at the first drying stage, up to 100 degrees C, only the water that is not fully hydrogen bonded is removed. Moreover, the amine intensity band does not change up to 200 degrees C, the temperature at which the structural stability of the multilayer lysozyme films ceases.  相似文献   

6.
The material formed by depositing C(2)(-) anions onto/into thin C(60) films (on graphite) at room temperature has been studied by means of thermal desorption mass spectroscopy, ultraviolet photoionization spectroscopy, atomic force microscopy (AFM), and surface enhanced Raman spectroscopy. As-prepared, C(2)/C(60) films manifest thermal desorption behaviour which differs significantly from pure C(60) films. Whereas the latter can be fully sublimed, we observe decomposition of C(2)/C(60) films to a high-temperature-stable material while predominantly C(60), C(62), and C(64) are desorbed in parallel. Deposition of C(2)(-) also leads to significantly modified electronic and vibrational properties. Based on DFT model calculations of the Raman spectra, we suggest that as-prepared C(2)/C(60) films contain appreciable amounts of polymeric networks comprising -C(2)-C(60)-C(2)-C(60)- chains. Detection of sublimed C(62) and C(64) upon heating implies that thermal decomposition of C(2)/C(60) films involves addition/uptake of C(2) units into individual fullerene cages. Correspondingly, annealing films up to various intermediate temperatures results in significant modifications to valence-band UP spectra as well as to surface topographies as imaged by AFM. The novel carbonaceous material obtained by heating to T > 950 K has a finite density of states at the Fermi level in contrast to as-prepared C(2)/C(60). It comprises fused fullerene cages.  相似文献   

7.
Thin solid films of bis benzimidazo perylene (AzoPTCD) were fabricated using physical vapor deposition (PVD) technique. Thermal stability and integrity of the AzoPTCD PVD films during the fabrication ( approximately 400 degrees C at 10(-6) Torr) were monitored by Raman scattering. Complementary thermogravimetric results showed that thermal degradation of AzoPTCD occurs at 675 degrees C. The growth of the PVD films was established through UV-vis absorption spectroscopy, and the surface morphology was surveyed by atomic force microscopy (AFM) as a function of the mass thickness. The AzoPTCD molecular organization in these PVD films was determined using the selection rules of infrared absorption spectroscopy (transmission and reflection-absorption modes). Despite the molecular packing, X-ray diffraction revealed that the PVD films are amorphous. Theoretical calculations (density functional theory, B3LYP) were used to assign the vibrational modes in the infrared and Raman spectra. Metallic nanostructures, able to sustain localized surface plasmons (LSP) were used to achieve surface-enhanced resonance Raman scattering (SERRS) and surface-enhanced fluorescence (SEF).  相似文献   

8.
Phase separation in thin film blends of poly(tert-butyl acrylate) (PtBA) and a polyhedral oligomeric silsesquioxane (POSS), trisilanolphenyl-POSS (TPP), is studied as functions of annealing temperature and time, using reflected light optical microscopy, atomic force microscopy, and X-ray photoelectron spectroscopy. The results demonstrate that the PtBA/TPP blend system confined to thin films ( approximately 90 nm) exhibits lower critical solution temperature (LCST) behavior with a critical temperature of approximately 70 degrees C and a critical composition of 60 wt % PtBA with insignificant dewetting at the phase boundary. Off-critical spinodal behavior is observed for 58 and 62 wt % PtBA blend films. Phase separation by nucleation and growth is observed for all compositions outside the window between 58 and 62 wt % PtBA. The temporal evolution of spinodal decomposition in 60 wt % PtBA blend films is explored at annealing temperatures of 75, 85, 95, and 105 degrees C. The morphological evolution in 60 wt % PtBA blend films is similar for all experimental temperatures (75, 85, 95, and 105 degrees C) with the expected shorter time scales for phase evolution at higher annealing temperatures. Fast Fourier transforms of optical micrographs reveal that these blend films immediately undergo phase separation by spinodal decomposition during temperature jump experiments. Power law scaling for the characteristic wavevector with time (q approximately t(n) with n approximately -1/4 to -1/3) for domain growth during the early stages of phase separation yields to domain pinning at the later stages for 60 wt % PtBA blend films annealed at 75, 85, and 95 degrees C. In contrast, domain growth is pinned over the entire experimental time scale for 60 wt % PtBA blend films annealed at 105 degrees C.  相似文献   

9.
Silica xerogels were synthesized and annealed at 1000 degrees C for different durations to yield stable silica materials. The samples were prepared through base-catalyzed hydrolysis and condensation of tetramethyl orthosilicate in methanol. After aging and drying steps, clear and solid xerogels exhibiting a narrow pore size distribution were achieved. The annealing treatment of these xerogels was performed at 1000 degrees C and proved in the present study to lead to a monolithic glass when a progressive heat-treatment procedure was employed to attain 1000 degrees C. In addition to the expected glass, silica foams and ordered phases were observed when the samples were instantaneously heat-treated at 1000 degrees C. Raman spectra of the foamed materials exhibit the classical features of amorphous silica, whereas transmission electronic microscopy pictures reveal the presence of crystallized domains within the vitreous matrix. These crystallites are prone to nucleation and growth processes, which jeopardize the believed stability of the silica foam. The assessment of the hydroxyl content by IR spectroscopy reveals the role played by the latter polycondensation of silanols. The occurrence of foaming process was thus found to result from two competitive phenomena occurring at 1000 degrees C: evacuation of water-related species and viscous sintering.  相似文献   

10.
Tubular graphite cones (TGCs) with a single-crystal nanotip have been achieved by means of microwave plasma-assisted chemical vapor deposition using in-situ-evaporated Fe catalysts. The absence of the disorder-induced D band in Raman spectra revealed the single-crystalline feature of the nanotip. TGCs were found to stem from Fe catalytic carbon spherules on the order of 100 mum diameter, whose critical role in promoting both nucleation and plasma annealing in the formation of highly crystalline TGCs is discussed. The crystalline quality of such TGCs can be further verified by the investigation of their oxidative stability in air. All TGCs can survive up to 600 degrees C without any structural variations, and a few TGCs still survive with an anisotropic etched and stepped nanotip at temperatures up to 800 degrees C, much better than CNTs. Thus, TGCs with single crystalline nanotips are potential candidates for scanning probes in high-temperature oxygen-containing environments.  相似文献   

11.
Infrared reflection absorption spectroscopy (IRRAS) of the highly symmetric molecules C2H4 and C2H6 adsorbed as mono- and multilayers onto copper films is studied in relation to the type of metal-film roughness. Spectra of C2H4 show Raman lines on cold-deposited Cu films but not on Cu deposited at room temperature. For C2H6, the IR spectra from both types of metal films are similar; the surface infrared selection rule holds and no Raman bands are observed. The Raman lines that appear in the IR spectra already at low exposures are attributed to species adsorbed at special defect sites, identical to the so-called active sites in surface enhanced Raman scattering (SERS). The IR excitation mechanism by transient electron transfer to the adsorbate pi* state can deliver a discrete vibrational band of a Raman-active vibration only under certain circumstances, for example, for adsorbates at the "SERS-active sites". C2H6 at these sites cannot deliver Raman bands in IRRAS, because it has no pi* state. We also discuss IRRAS measurements on Cu(111) and Cu(110) single crystals, where Raman bands of C2H4 have been observed.  相似文献   

12.
The μ-(oxo)bis[phthalocyaninato] aluminum(III) (AlPc)(2)O films, with the crystallites oriented preferably in one direction, were obtained via chemical transformation of chloroaluminum(III) phthalocyanine AlClPc film upon its annealing in magnetic field. A comparative analysis of the influence of postdeposition annealing without and under applied magnetic field of 1 T on composition and morphology of AlClPc films has been carried out. The chemical transformation of AlClPc to (AlPc)(2)O on the substrate surface is studied by the methods of UV-vis and infrared spectroscopies, Raman, x-ray photoelectron spectroscopy as well as atomic force microscopy. Two interesting effects were observed upon heating the AlClPc films in magnetic field of 1 T. First, the temperature of the chemical transformation of AlClPc to (AlPc)(2)O decreased from 300 °C to 200 °C when magnetic field was applied during postdeposition annealing. Second, the formation of (AlPc)(2)O films with elongated crystallites with a preferential orientation was observed. The heating of (AlPc)(2)O films in a magnetic field at the same conditions did not demonstrate any effect on the structure and morphology of these films.  相似文献   

13.
The growth of cubic boron nitride (cBN) films on bare silicon and amorphous tetrahedral carbon (ta-C) layers prepared on silicon substrates was studied. The cBN films were prepared by radio frequency magnetron sputter deposition at approximately 870 degrees C. The original ta-C interlayers were graphitized and restructured under high temperature and possibly under ion bombardment during BN deposition. The majority of graphitic basal planes were nearly perpendicular to the surface of silicon substrates. The BN films grown on these restructured carbon layers were deposited with higher content of cubic phase and did not show delamination signs. Turbostratic BN (tBN) basal planes extended carbon basal planes and their edges served as cBN nucleation sites. The cBN films grown on textured ta-C interlayers were insensitive to the ambient environment. The residual sp(3)-bonded carbon phase confined in the interlayers probably acts as a diffusion barrier preventing the oxidation of dangling bonds near BN interface and thus precludes weakening the interface as a result of volume expansion. The carbon interlayers also improve the crystallinity of the oriented tBN because they are continuation of carbon graphitic basal planes so that the volume fraction of nitrogen-void (N-void) defects in the sp(2)-bonded BN intermediate layers is reduced. The strong sp(3)-bonded carbon matrix could thereto withstand large compressive stress and facilitates deposition of thicker cBN films.  相似文献   

14.
This paper investigates the relationship between the pre-annealing conditions and the thermal stability of uniaxially-drawn poly(vinylidene fluoride) (PVDF) films in order to clarify their technical limits in terms of temperatures that can be used for assembly processes and for practical applications. Specimens that are pre-annealed below their melting temperature apparently shrink in the stretch-direction when they are exposed to elevated temperatures above the pre-annealing temperature. Since the content of β-PVDF in the films decreases simultaneously with the shrinkage, their piezoelectric properties also deteriorate. In addition, there is a suggestion that the level of polarization in the remaining β-phase decreases significantly during annealing above 90-100 °C. However, the dimensions and the piezoelectric coefficients of the films remain stable during annealing below the pre-annealing temperature. Therefore, the thermal stability of PVDF films can be controlled practically by using the appropriate pre-annealing temperature. By contrast, the films were softened at 90-100 °C when the pre-annealing treatment was conducted above the melting temperature. The softening of films that are pre-annealed above the melting temperature is a different phenomenon from that observed in specimens that are pre-annealed below the melting temperature.  相似文献   

15.
This article describes the stability and reversibility of ultrathin films of N-isopropylacrylamide (NIPA)-vinylimidazole (VI)-poly(ethylene glycol) (PEG) graft terpolymer adsorbed at the solid-liquid interface upon temperature cycling from below to above its phase transition temperature. The coil-to-globule and globule-to-coil phase transitions were captured by in situ fluid tapping atomic force microscopy (AFM). The film thickness of 1 nm was determined by AFM, X-ray photoelectron spectroscopy, and X-ray reflectivity. The concentration required to reach full coverage was found to be higher when adsorption occurred below the phase transition temperature. From 23 to 42 degrees C, the adsorbed NIPA terpolymer film was observed to be molecularly smooth, corresponding to the close-packed structure of flexible polymer coils. Particles containing between one and a few globules appeared abruptly at the interface at 42-43 degrees C, the same temperature as the solution phase transition temperature, which was determined by dynamic light scattering. The size of the particles did not change with temperature, whereas the number of particles increased with increasing temperature up to 60 degrees C. The particles correspond to the collapsed and associated state of the globules. The film morphological changes were found to be reversible upon temperature cycling. Subtle differences were observed between dip-coated and spin-coated films that are consistent with a higher degree of molecular freedom for spin-coated films. The study contributes to the fundamental understanding and applications of smart ultrathin films and coatings.  相似文献   

16.
Latex films have been prepared by annealing pyrene (Py)-labeled poly(methyl methacrylate)-polyisobutylene particles at the glass transition temperature (100 degrees C). These films were then irradiated by gamma rays from (60)Co in a gamma cell at room temperature at various dose rates (rad/h). Before dissolution the films were annealed at 200 degrees C for a 30 min time interval to complete the film formation process. Steady-state fluorescence techniques were used to monitor the dissolution of irradiated latex films. Dissolution of films in a chloroform-heptane (80%-20%) mixture was monitored in real time by the Py fluorescence intensity change. Relaxation constants, k(0), and dissolution coefficients, D(d), of polymer chains were measured. Two different regimes of D(d) values were observed during dissolution, which are related to two different molecular weight distributions caused by scission and branching of polymer chains when they were irradiated and annealed. Copyright 2001 Academic Press.  相似文献   

17.
The growth of Au clusters on a fullerene thin film was investigated by in situ photoelectron spectroscopy in the ultraviolet (UPS) and x-ray (XPS) regime. Due to its highly corrugated surface fullerene films provide a wide range of bonding sites which could be exploited as molecular templates and serve to create a cluster superstructure. To gain insight into the fullerene-Au interaction two types of experiments were performed: (i) the deposition of Au on a fullerene surface, and (ii) the deposition of fullerenes on a Au surface. In both experiments an island growth mode is observed. The deposition of submonolayer amounts of C60 onto a gold film showed that the main interaction of the two species is due to chemisorption of the first C60 monolayer. In addition a constant band bending in the fullerene film is detected, but the UPS valence-band spectra show that there is no charge transfer from the Au to the C60 lowest unoccupied molecular orbital. In the reverse experiment, the cluster growth of Au on the corrugated C60 surface, the analysis of the Au core level does not reveal a specific bonding or nucleation site for Au atoms and clusters. This is in contrast to observations with Si clusters, which prefer to reside in the troughs between the fullerene molecules. The Au clusters grow continually from a size of about 55 atoms for the early stages of growth up to 150 atoms for the deposition of a nominal coverage of 1.5 nm. These data are derived from an analysis of the d-band splitting and the Au 4f core-level shift due to delayed photohole relaxation. The thermal stability of the Au-clusters-covered fullerene film was investigated by annealing in situ up to temperatures of 650 degrees C. For temperatures up to 450 degrees C a continuous growth of the clusters is detected, which is accompanied by a slight drop in Au concentration in the range of XPS for annealing temperatures higher than 350 degrees C. This may be due to a ripening of the clusters. The presence of Au apparently delays fullerene sublimation. The film shows a very good thermal stability and even after annealing at 650 degrees C there is still a fullerene film detectable in the photoelectron spectroscopy spectra.  相似文献   

18.
Gold‐induced (Au‐) crystallization of amorphous germanium (α‐Ge) thin films was investigated by depositing Ge on aluminum‐doped zinc oxide and glass substrates through electron beam evaporation at room temperature. The influence of the postannealing temperatures on the structural properties of the Ge thin films was investigated by employing Raman spectra, X‐ray diffraction, and scanning electron microscopy. The Raman and X‐ray diffraction results indicated that the Au‐induced crystallization of the Ge films yielded crystallization at temperature as low as 300°C for 1 hour. The amount of crystallization fraction and the film quality were improved with increasing the postannealing temperatures. The scanning electron microscopy images show that Au clusters are found on the front surface of the Ge films after the films were annealed at 500°C for 1 hour. This suggests that Au atoms move toward the surface of Ge film during annealing. The effects of annealing temperatures on the electrical conductivity of Ge films were investigated through current‐voltage measurements. The room temperature conductivity was estimated as 0.54 and 0.73 Scm−1 for annealed samples grown on aluminum‐doped zinc oxide and glass substrates, respectively. These findings could be very useful to realize inexpensive Ge‐based electronic and photovoltaic applications.  相似文献   

19.
Nanocrystalline films of magnetite have been prepared by a novel sol–gel route in which, a solution of iron (III) nitrate dissolved in ethylene glycol was applied on glass substrates by spin coating. Coating solution showed Newtonian behaviour and viscosity was found as 0.0215 Pa.s. Annealing temperature was selected between 291 and 350 °C by DTA analysis in order to obtain magnetite films. In-plane grazing angle XRD and TEM studies showed that magnetite phase was present upon annealing the films at 300 °C. The films had crack free surfaces and their thicknesses varied between ~10 and 200 nm. UV–Vis spectrum results showed that transmittance of the films increases with decreasing annealing temperature and increasing spinning rate. Up to 96% transmittance was observed between the wavelengths of 900–1,100 nm. Vibrating sample magnetometer measurements indicated that magnetite thin films showed ferromagnetic behavior and the saturation magnetization value was found as ~35 emu/cm3.  相似文献   

20.
采用强流脉冲离子束(High-intensitypulsedionbeam,HIPIB)烧蚀技术在Si(100)基体上沉积类金刚石(Diamond-likecarbon,DLC)薄膜,衬底温度的变化范围为298~673K.利用Raman光谱和X射线光电子谱(XPS)对DLC薄膜的化学结合状态与衬底温度之间关系进行研究.薄膜XPS的C1s谱的解谱分析得出薄膜中含有sp3C(结合能为285.5eV)和sp2C(结合能为284.7eV)成分,根据解谱结果评价薄膜中sp3C含量.根据XPS分析可知,衬底温度低于473K时,sp3C的含量大约为40%左右;随着沉积薄膜时衬底温度的提高,sp3C的含量降低,由298K时的42.5%降到673K时的8.1%,从573K开始发生sp3C向sp2C转变.Raman光谱表明,随着衬底温度的提高,Raman谱中G峰的峰位靠近石墨峰位,G峰的半峰宽降低,D峰与G峰的强度比ID/IG增大,说明薄膜中的sp3C的含量随衬底温度增加而减少.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号