首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 36 毫秒
1.
We analyzed the thermal crystallization, glass‐transition behavior, and mechanical properties of melt‐extruded poly(trimethylene terephthalate) (PTT) films to investigate their physical aging and annealing effects. The physical aging and annealing of PTT films had an influence on the glass‐transition temperature, recrystallization behavior, and mechanical properties. When samples were aged at an ambient temperature, the crystallization temperature decreased largely within 5 h, the heat of crystallization increased, and the breaking stress and breaking elongation increased. The glass‐transition temperature of annealed samples, which was obtained from differential scanning calorimetry and dynamic mechanical measurements, increased with increasing annealing temperature below 80 °C but decreased above that temperature. In addition, the glass‐transition temperature and modulus of annealed samples were largely affected by the annealing time; in particular, they increased sharply within 1 h on annealing at 50 °C. Consequently, the change in the glass‐transition temperature on annealing was ascribed to the fact that the molecular constraint due to recrystallization and the mobility of rigid amorphous PTT chains competed with each other, being dependent on the annealing temperature. The mechanical properties of aged samples were closely related to their cold‐crystallization behavior. © 2001 John Wiley & Sons, Inc. J Polym Sci Part B: Polym Phys 39: 1920–1927, 2001  相似文献   

2.
Thin films of Al doped ZnO (Al:ZnO) were deposited on two substrates (Si and glass) at room temperature and 300°C using DC magnetron sputtering. These films were bombarded with 50 keV H+ beam at several fluences. The pristine and ion beam irradiated films were analysed by X‐ray diffraction, Raman spectroscopy, scanning electron microscopy, and UV‐Vis spectroscopy. The X‐ray diffraction analysis, Hall measurements, Raman and UV‐Vis spectroscopy confirm that the structural and transport properties of Al:ZnO films do not change substantially with beam irradiation at chosen fluences. However, in comparison to film deposited at room temperature, the Al:ZnO thin film deposited at 300°C shows increased transmittance (from 70% to approximately 90%) with ion beam irradiation at highest fluence. The studies of surface morphology by scanning electron microscopy reveal that the ion irradiation yields smoothening of the films, which also increases with ion fluences. The films deposited at elevated temperature are smoother than those deposited at room temperature. In the paper, we discuss the interaction of 50 keV H+ ions with Al:ZnO films in terms of radiation stability in devices.  相似文献   

3.
Q Li  C Chen  Z Chen  Z Jiao  M Wu  CH Shek  CM Wu  JK Lai 《Inorganic chemistry》2012,51(15):8473-8478
Results on Al-induced crystallization of amorphous Ge (a-Ge) deposited by vacuum thermal evaporation techniques under thermal annealing in N(2) atmosphere are presented in detail. The a-Ge crystallization and fractal Ge pattern formation on the free surface of annealed Al/Ge bilayer films deposited on single-crystal Si (100) substrates were investigated by using scanning electron microscopy (SEM), X-ray diffraction (XRD), atomic force microscopy (AFM), energy dispersive X-ray spectrometry (EDS), and Raman spectra. It is found that the temperature field effects play an extremely crucial role in a-Ge crystallization and fractal Ge formation process. The open branched structure of fractal Ge clusters in Al/Ge bilayer films was effectively prepared by Al-induced crystallization when they were annealed at 400 °C for 60 min. These films with fractal Ge clusters exhibit charming noninteger dimensional nanostructures, which differ from those of conventional integer dimensional materials such as one-dimensional nanowires/nanorods, nanotubes, nanobelts/nanoribbons, two-dimensional heterojunctions, thin films, and zero-dimensional nanoparticles. The SEM image shows that a big Al grain was found located near the center of a fractal Ge cluster after the films were annealed at 400 and 500 °C for 60 min. This suggests that the grain boundaries of polycrystalline Al films are the initial nucleation sites of a-Ge. It also validates the preferred nucleation theory of a-Ge at triple-point grain boundaries of polycrystalline Al at the interface. This discovery may be explained by the metal-induced nucleation (MIN) mechanism.  相似文献   

4.
In this study, the authors researched the preparations of superhydrophilic/superhydrophobic surfaces on commercial cup stock polyethylene coated papers by using sparked aluminum nanoparticles deposited on substrates through a sparking process. In this stage, the surface was porous and showed superhydrophilic properties. The samples were then annealed in air at various temperatures and some transformed to superhydrophobicity. It is well known that a suitable roughness in combination with low surface energy has been required to obtain superhydrophobic surfaces. Therefore, it is believed that during annealing process, when polyethylene is diffused from the substrate through the nanoparticle films and the superhydrophobic characteristics were created. The scanning electron microscope images showed that the film surfaces had a fluffy structure for both the as‐deposited and the annealed samples. However, the atomic force microscopy phase images showed completely different surface properties. Moreover, the X‐ray photoelectron spectroscopy spectra showed different surface chemical compositions. The experimental results revealed that the working temperature to produce superhydrophobic surfaces depended on the sparked film thickness. Furthermore, in order to prove the assumption explained above, glass and poly (methyl methacrylate) were also used as substrates.  相似文献   

5.
Copper‐doped iron sulfide (CuxFe1?xS, x = 0.010–0.180) thin films were deposited using a single‐source precursor, Cu(LH)2Cl2 (LH = monoacetylferrocene thiosemicarbazone), by aerosol‐assisted chemical vapor deposition technique. The Cu‐doped FeS thin films were deposited at different substrate temperatures, i.e. 250, 300, 350, 400 and 450 °C. The deposited thin films were characterized by X‐ray diffraction (XRD) patterns, Raman spectra, scanning electron microscopy, energy dispersive X‐ray analysis (EDX) and atomic force microscopy. XRD studies of Cu‐doped FeS thin films at all the temperatures revealed formation of single‐phase FeS structure. With increasing substrate temperature from 250 to 450 °C, there was change in morphology from wafer‐like to cylindrical plate‐like. EDX analysis showed that the doping percentage of copper increased as the substrate temperature increased from 250 to 450 °C. Raman data supports the doping of copper in FeS films. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

6.
In the present work, the crystalline structures and the melting behaviors of poly(L ‐lactide) (PLLA) obtained after being annealed at different conditions have been investigated through differential scanning calorimetry and wide‐angle X‐ray diffraction, respectively. To improve the crystallization of PLLA, functionalized multiwalled carbon nanotubes (f‐MWCNTs) are introduced into PLLA. Our results show that by prolonging the annealing duration or enhancing the annealing temperature, the degree of crystallinity of PLLA gradually increases. Very important, the addition of f‐MWCNTs promotes the cold‐crystallization of PLLA dramatically even at relatively lower annealing temperature or in shorter annealing duration. Further results show that, whether in neat PLLA or in PLLA/f‐MWCNTs nanocomposite, only α form crystal forms during the annealing process. The glass transition temperature shifts to high temperatures because of the increase of crystallinity. F‐MWCNTs exhibit great heterogeneous nucleation effect for PLLA crystallization through enhancing the nucleation density, leading to homogeneous and tiny spherulites formation in a very short time. © 2008 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 47: 326–339, 2009  相似文献   

7.
A new method for deposition nitrogen‐doped TiO2 nanofibers films was proposed. By using atmospheric pressure plasma jet generated by dual‐frequency power sources, the morphologies of these TiO2 films were investigated by scanning electron microscopy. The structures of these films were characterized by X‐ray diffraction and Raman Shift Spectroscopy. The elemental composition of these films [Colour figure can be viewed at wileyonlinelibrary.com ] were characterized by means of X‐ray photoelectron spectroscopy. The optical absorption of these films were studied by UV‐vis absorbance spectra. These results indicated that the nitrogen‐doped nanofibers TiO2 films have mixed phases of anatase and rutile. They also display narrow band gap. The I‐V characteristics curves exhibited good conductivity ability. Optical emission spectroscopy (OES) was measured to analyze the active group.  相似文献   

8.
Glasses in the system 5In2O3·94Na2B4O7 were fabricated via melt quenching technique. The amorphous nature of the quenched glasses was confirmed by X‐ray powder diffraction studies, and the infrared spectra of the glasses show no boroxol ring formation in the structure of these glasses. Differential thermal analysis is shown glass transition temperature 696°C and crystallization temperature 1151°C. A cerium‐zirconium mixed oxide Ce0.75Zr0.25O2 and Ho‐doped cerium‐zirconium mixed oxide were obtained by solid‐state method. Then glass powder and Ho‐doped cerium‐zirconium mixed oxide were mixed. The mixture was heated in a crucible. The glass‐ceramic sample was obtained by pouring the melts on stainless steel. Obtained samples were annealed at 450°C for 1 h to remove thermal strain. Differential thermal analysis for glass‐ceramic sample is shown glass transition temperature 668°C and crystallization temperature 1159°C. The scanning electron microscopy study for glass‐ceramic indicates that the crystallized glass consists of rod‐like crystals with average diameter of about 38 nm dispersed in the glassy regions.  相似文献   

9.
Thin films of cobalt (10, 40, and 100 nm) are deposited on Si substrate by electron beam physical vapor deposition technique. After deposition, 4 pieces from each of the wafers of silicon substrate were cut and annealed at a temperature of 200°C, 300°C, and 400°C for 2 hours each, separately. X‐ray diffraction, atomic force microscopy, and transmission electron microscopy (TEM) are used to study the structural and morphological characteristics of the deposited films. To obtain TEM images, Co films are deposited on Cu grids; so far, no such types of TEM images of Co films are reported. Structural studies confirm nanocrystalline nature with hexagonal close packed structure of the deposited Co film at lower thickness, while at higher thickness, film structure transforms to amorphous with lower surface roughness value. The particle sizes in all the cases are in the range of 3 to 5 nm. Micro‐Raman spectroscopy is also used to study the phase formation and chemical composition as a function of thickness and temperature. The results confirm that the grown films are of good quality and free from any impurity. Studies show the silicide formation at the interface during deposition. The appearance of new band at 1550 cm−1 as a result of annealing indicates the structural transformation from CoSi to CoSi2, which further enhances at higher annealing temperatures.  相似文献   

10.
ZnO thin films were grown by pulsed laser deposition on titanium substrates at different substrate temperatures ranging from 300 to 700 °C. X‐ray diffraction (XRD), X‐ray photoelectron spectroscopy (XPS),photoluminescence, and Raman spectroscopy are employed to investigate the change of properties. XRD, XPS, and Raman data showed that the films consisted of TiO2 at high substrate temperature, which will deteriorate the crystallization quality of ZnO films. The optimum temperature for the growth of ZnO films on the Ti substrate is about 500 °C in this paper. The ZnO films grown on titanium substrate can be used in direct current, microwave, and medical applications. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

11.
Single‐bi‐layer of Ni–Ti thin film was deposited using DC and RF magnetron sputtering technique by layer‐wise deposition of Ni and Ti on Si(100) substrate in the order of Ni as the bottom layer and Ti as the top layer. The deposition of these amorphous as‐deposited thin films was followed by annealing at 300 °C, 400 °C, 500 °C, and 600 °C temperature with 1‐h annealing time for each to achieve crystalline thin films. This paper describes the fabrication processes and the novel characterization techniques of the as‐deposited as well as the annealed thin films. Microstructures were analysed using FESEM and HRTEM. Nano‐indentation and AFM were carried out to characterize the mechanical properties and surface profiles of the films. It was found that, for the annealing temperatures of 300 °C to 600 °C, the increase in annealing temperature resulted in gradual increase in atomic‐cluster coarsening with improved ad‐atom mobility. Phase analyses, performed by GIXRD, showed the development of silicide phases and intermetallic compounds. Cross‐sectional micrographs exhibited the inter‐diffusion between the two‐layer constituents, especially at higher temperatures, which resulted either in amorphization or in crystallization after annealing at temperatures above 400 °C. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

12.
制备条件对铝掺杂氧化锌(AZO)薄膜结构和电学性质的影响   总被引:3,自引:0,他引:3  
本文利用溶胶-凝胶法在玻璃基底上制备得到了AZO透明导电薄膜,就两种不同的热处理-退火方式对薄膜的结构与性质的影响做了比较,研究了掺杂浓度、退火温度对薄膜结构及性质的影响规律.结果表明,高温、分层退火、铝掺杂均有利于生成结晶度高、具有C轴优先取向的AZO薄膜;高温和分层退火有利于晶粒长大,相反铝掺杂却有碍晶粒长大;薄膜的电学性质随退火温度和铝掺杂量的变化呈现规律的变化.通过分析AZO薄膜内的晶体生长过程,本文认为主要是制备条件和AZO晶体的晶面习性导致了薄膜的结晶度、晶体生长取向性和晶粒尺寸等方面的差异.  相似文献   

13.
Li  Gang  Zhu  Xuebin  Lei  Hechang  Jiang  Haifeng  Song  Wenhai  Yang  Zhaorong  Dai  Jianming  Sun  Yuping  Pan  Xu  Dai  Songyuan 《Journal of Sol-Gel Science and Technology》2010,53(3):641-646
CuAlO2 thin films were prepared on quartz glass and sapphire substrates by chemical solution deposition method using copper acetate monohydrate, aluminum nitrate nonahydrate and 2-methoxyethanol as starting precursor and solvent. The effects of annealing temperature on the structural, morphological, electrical and optical properties have been studied. Via the optimized annealing treatment condition, CuAlO2 film annealed at 850 °C in nitrogen flow of 400sccm under atmosphere pressure exhibits the best performance with the lowest room temperature resistivity of 3.6 × 102 Ω cm and the highest optical transmission in the visible region (>70% at around 600 nm wavelength). CuAl2O4 and CuO phases, not CuAlO2 phase are obtained when annealing temperature is lower than 850 °C. However, a further increase of annealing temperature weakens the crystallization quality and deteriorates the surface morphology of CuAlO2 films as the annealing temperature exceeds 850 °C, leading to an increase in the resistivity and a decrease of the optical transmission in the visible region of CuAlO2 films.  相似文献   

14.
As‐spun poly(ethylene‐2,6‐naphthalate) (PEN) fibers (i.e., precursors) prepared from high molecular weight polymer were drawn and/or annealed under various conditions. Structure and property variations taking place during the treatment process were followed via wide‐angle X‐ray scattering (WAXS), small‐angle X‐ray scattering, differential scanning calorimetry (DSC), and mechanical testing. Both the WAXS and DSC measurements of the cold‐drawn samples stretched from a low‐speed‐spun amorphous fiber indicate that strain‐induced crystallization can occur at a temperature below the glass‐transition temperature and that the resultant crystal is in the α‐form modification. In contrast, when the same precursor was subjected to constrained annealing, its amorphous characteristics remained unchanged even though the annealing was performed at 200 °C. These results may imply that the application of stretching stress is more important than elevated temperatures in producing α‐form crystallization. The crystalline structure of the hot‐drawn samples depends significantly on the morphology of the precursor fibers. When the precursor was wound at a very low speed and in a predominantly amorphous state, hot drawing induced the formation of crystals that were apparently pure α‐form modification. For the β‐form crystallized precursors wound at higher speeds, a partial crystalline transition from the β form to the α form was observed during the hot drawing. In contrast with the mechanical properties of the as‐spun fibers, those of the hot‐drawn products are not improved remarkably because the draw ratio is extremely limited for most as‐spun fibers in which an oriented crystalline structure has already formed. © 2000 John Wiley & Sons, Inc. J Polym Sci B: Polym Phys 38: 1424–1435, 2000  相似文献   

15.
Information on the crystalline structure and the properties of poly(butylene‐2,6‐naphthalene dicarboxylate) (PBN) has not been well reported until now, but it is known that there are two different crystal modifications in PBN, as follows: one is formed in isotropic samples by annealing (α form); another appears by annealing with tension (β form). The relation between the crystal modifications and the kinetics of isothermal crystallization for PBN was investigated using in‐situ Fourier transform infrared spectroscopy (FTIR) and wide‐angle X‐ray diffraction (WAXD). The melting behavior of each crystalline form was also studied by means of FTIR and differential scanning calorimetry (DSC) measurements. From the analysis of the melt‐crystallized PBN specimens, the two crystalline forms coexisted in the isotropic samples melt‐crystallized at 230°C, but only the α crystal modification was observed in the films annealed at lower temperatures. In addition, it was revealed that, at 230°C, the β modification was formed only in the primary crystallization process. © 1999 John Wiley & Sons, Inc. J Polym Sci B: Polym Phys 37: 561–574, 1999  相似文献   

16.
[Ge9]4? Zintl clusters are used as soluble germanium source for a bottom–up fabrication of Ge nanomorphologies such as inverse opal structures with tunable composition. The method is based on the assembly and oxidation of [Ge9]4? clusters in a template mold using SiCl4, GeCl4, and PCl3 leading to Si and P‐containing Ge phases as shown by X‐ray diffraction, Raman spectroscopy, and energy‐dispersive X‐ray analysis. [Ge9]4? clusters are retained using ethylenediamine (en) as a transfer medium to a mold after removal of the solvent if water is thoroughly excluded, but are oxidized to amorphous Ge in presence of water traces. 1H NMR spectroscopy reveals the oxidative deprotonation of en by [Ge9]4?. Subsequent annealing leads to crystalline Ge. As an example for wet‐chemical synthesis of complex Ge nanomorphologies, we describe the fabrication of undoped and P‐doped inverse opal‐structured Ge films with a rather low oxygen contents. The morphology of the films with regular volume porosity is characterized by SEM, TEM, and grazing incidence small‐angle X‐ray scattering.  相似文献   

17.
The relationships of the structure and electrical properties of anisotropic HCl‐doped polyaniline (PANI) films cast from N,N′‐dimethylpropylene urea (DMPU) solutions and stretched to different draw ratios were studied. The anisotropic structure of the stretched PANI films was examined by X‐ray diffraction, near‐infrared wave‐guide coupling, and polarized infrared measurements. The PANI emeraldine base (EB) films cast from DMPU solutions had a single‐phase noncrystalline structure, and stretching of the films did not cause crystallization to occur. The transition moment angles of two weakly absorbing infrared bands were determined, and the Hermans' orientation functions for the PANI EB films were calculated. The PANI films were then doped with HCl, and the electrical properties were determined by impedance spectroscopy. With a specially designed test fixture, the in‐plane and through‐plane impedance was obtained. The conductivity along the stretch direction increased with orientation. The in‐plane conductivity was significantly higher than the through‐plane conductivity. © 2003 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 41: 823–841, 2003  相似文献   

18.
In this study, maghemite (γ‐Fe2O3) nanoparticles were initially synthesized via chemical co‐precipitation and then deposited by spray pyrolysis as thin films on white glass substrates. The thin films were annealed for 8 h at 400, 450, 500, 550, and 600 °C in an oven. The structural studies of maghemite nanoparticles were carried out using X‐ray diffractometer. Structural properties that we investigated by X‐ray diffraction (XRD), Fourier transform infrared (FTIR) spectroscopy, SEM, and Energy dispersive X‐ray analysis (EDS). Optical properties of the samples were also investigated by ultraviolet‐visible (UV–vis) spectroscopy. The results showed that maghemite nanoparticles have crystalline structure with domain that increases in size with increasing annealing temperature. The optical band gap values were found to reduce from 2.9 to 2.4 eV with increase in annealing temperature. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

19.
Thermal stability of well-crystallized cubic boron nitride (cBN) films grown by chemical vapor deposition has been investigated by cathodoluminescence (CL), Raman spectroscopy, and scanning electron microscopy (SEM) with the cBN films annealed at various temperatures up to 1,300 degrees C. The crystallinity of the cBN films further improves, as indicated by a reduction of the relevant Raman line width, when the annealing temperature exceeds 1,100 degrees C. Structural damage or amorphization was observed on the grain boundaries of the cBN crystals when annealing temperature reaches 1,300 degrees C. The CL spectra are found to be unchanged up to 1,100 degrees C after annealing at 500 degrees C, showing the stability of the cBN films in electronic properties up to this temperature. New features were observed in the CL spectra when annealing temperature reaches 1,200-1,300 degrees C.  相似文献   

20.
The effect of post‐deposition annealing on surface morphology and gas sensing properties of palladium phthalocyanine (PdPc) nanostructured thin films has been studied. PdPc thin films were deposited on polyborosilicate substrate by thermal evaporation technique at room temperature. The surface morphology of thin films was investigated by SEM, X‐ray diffraction, and optical absorption. X‐ray diffraction patterns showed a phase transition from α to β based on post‐deposition annealing at temperatures above 200 °C. The SEM and optical absorption confirmed that annealing strongly influenced the surface morphology of nanostructured thin films. Sandwich devices (Au|PdPc|Al) were fabricated and exposed to different concentrations of NO2 and NH3 as oxidizing and reducing gases at different temperatures, and the sensitivity of devices were obtained versus gases. Obtained results showed α‐PdPc thin film devices had higher sensitivity in comparison with devices in β‐phase. In particular, it was found that the sensitivity of devices is temperature dependent and the best operating temperature range of devices was measured at about 90–100 °C. Devices showed good reversibility, response, and recovery time at room temperature. Finally, the stability of sensors was investigated for a period of about 1 year; results showed that the sensors were stable for 2 months and lost about 30% of their sensitivity after 1 year. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号