首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Consider a homogeneous parabolic problem on a smooth bounded domain in ℝ N but with initial data and Neumann boundary data of low regularity. Sharp interior maximum norm error estimates are given for a semidiscrete C 0 finite element approximation to this problem. These estimates are obtained by first establishing a new localized L estimate for semidiscrete finite element approximations on interior subdomains. Numerical examples illustrate the findings. AMS subject classification (2000) 65N30  相似文献   

2.
We derive new a priori error estimates for linear parabolic equations with discontinuous coefficients. Due to low global regularity of the solutions the error analysis of the standard finite element method for parabolic problems is difficult to adopt for parabolic interface problems. A finite element procedure is, therefore, proposed and analyzed in this paper. We are able to show that the standard energy technique of finite element method for non-interface parabolic problems can be extended to parabolic interface problems if we allow interface triangles to be curved triangles. Optimal pointwise-in-time error estimates in the L 2(Ω) and H 1(Ω) norms are shown to hold for the semidiscrete scheme. A fully discrete scheme based on backward Euler method is analyzed and pointwise-in-time error estimates are derived. The interfaces are assumed to be arbitrary shape but smooth for our purpose.  相似文献   

3.
In this article, we consider the semidiscrete and the backward Euler fully discrete discontinuous finite volume element methods for the second‐order parabolic problems and obtain the optimal order error estimates in a mesh dependent norm and in the L2‐norm. © 2009 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq, 2010  相似文献   

4.
In this article a standard mortar finite element method and a mortar element method with Lagrange multiplier are used for spatial discretization of a class of parabolic initial‐boundary value problems. Optimal error estimates in L(L2) and L(H1)‐norms for semidiscrete methods for both the cases are established. The key feature that we have adopted here is to introduce a modified elliptic projection. In the standard mortar element method, a completely discrete scheme using backward Euler scheme is discussed and optimal error estimates are derived. The results of numerical experiments support the theoretical results obtained in this article. © 2008 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq 2008  相似文献   

5.
We consider semidiscrete approximations of parabolic boundary value problems based on an elliptic approximation by J. Nitsche, in which the approximating subspaces are not subject to any boundary conditions. Optimal Lp (L 2) error estimates are derived for both smooth and nonsmooth boundary data. The approach is

based on semigroup theory combined with the theory of singular integrals.  相似文献   


6.
We study the semidiscrete Galerkin approximation of a stochastic parabolic partial differential equation forced by an additive space-time noise. The discretization in space is done by a piecewise linear finite element method. The space-time noise is approximated by using the generalized L2 projection operator. Optimal strong convergence error estimates in the L2 and norms with respect to the spatial variable are obtained. The proof is based on appropriate nonsmooth data error estimates for the corresponding deterministic parabolic problem. The error estimates are applicable in the multi-dimensional case. AMS subject classification (2000) 65M, 60H15, 65C30, 65M65.Received April 2004. Revised September 2004. Communicated by Anders Szepessy.  相似文献   

7.
Rajen Kumar Sinha  Bhupen Deka 《PAMM》2007,7(1):2020023-2020024
In this exposition we study the finite element methods for second-order semilinear parabolic interface problems in two dimensional convex polygonal domains with smooth interface. Both semidiscrete and fully discrete schemes are analyzed. Optimal order error estimates in the L2(0, T; H1(Ω))-norm are established. (© 2008 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

8.
Two semidiscrete collocation approximations using smooth cubic splines are developed as approximations to the solution of two-point linear parabolic boundary value problems.L -convergence results are presented for these two approximations as well as the piecewise linear Galerkin approximation. Several computational examples are given to illustrate the convergence results and demonstrate the applicability of the method.  相似文献   

9.
In this article, we derive the sharp long‐time stability and error estimates of finite element approximations for parabolic integro‐differential equations. First, the exponential decay of the solution as t → ∞ is studied, and then the semidiscrete and fully discrete approximations are considered using the Ritz‐Volterra projection. Other related problems are studied as well. The main feature of our analysis is that the results are valid for both smooth and nonsmooth (weakly singular) kernels. © 1999 John Wiley & Sons, Inc. Numer Methods Partial Differential Eq 15: 333–354, 1999  相似文献   

10.
Summary We construct and analyze finite element methods for approximating the equations of linear elastodynamics, using mixed elements for the discretization of the spatial variables. We consider two different mixed formulations for the problem and analyze semidiscrete and up to fourth-order in time fully discrete approximations.L 2 optimal-order error estimates are proved for the approximations of displacement and stress.Work supported in part by the Hellenic State Scholarship Foundation  相似文献   

11.
We consider a finite element method (FEM) with arbitrary polynomial degree for nonlinear monotone elliptic problems. Using a linear elliptic projection, we first give a new short proof of the optimal convergence rate of the FEM in the L2 norm. We then derive optimal a priori error estimates in the H1 and L2 norm for a FEM with variational crimes due to numerical integration. As an application, we derive a priori error estimates for a numerical homogenization method applied to nonlinear monotone elliptic problems. © 2016 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq 32: 955–969, 2016  相似文献   

12.
In this article, we investigate the L(L2) ‐error estimates of the semidiscrete expanded mixed finite element methods for quadratic optimal control problems governed by hyperbolic integrodifferential equations. The state and the costate are discretized by the order k Raviart‐Thomas mixed finite element spaces, and the control is approximated by piecewise polynomials of order k(k ≥ 0). We derive error estimates for both the state and the control approximation. Numerical experiments are presented to test the theoretical results. © 2013 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq, 2013  相似文献   

13.
In this article, we discuss and analyze new conforming virtual element methods (VEMs) for the approximation of semilinear parabolic problems on convex polygonal meshes in two spatial dimension. The spatial discretization is based on polynomial and suitable nonpolynomial functions, and a Euler backward scheme is employed for time discretization. The discrete formulation of both the proposed schemes—semidiscrete and fully discrete (with time discretization) is discussed in detail, and the unique solvability of the resulted schemes is discussed. A priori error estimates for the proposed schemes (semidiscrete and fully discrete) in H1‐ and L2‐norms are derived under the assumption that the source term f is Lipschitz continuous. Some numerical experiments are conducted to illustrate the performance of the proposed scheme and to confirm the theoretical convergence rates.  相似文献   

14.
We analyze the spatially semidiscrete piecewise linear finite volume element method for parabolic equations in a convex polygonal domain in the plane. Our approach is based on the properties of the standard finite element Ritz projection and also of the elliptic projection defined by the bilinear form associated with the variational formulation of the finite volume element method. Because the domain is polygonal, special attention has to be paid to the limited regularity of the exact solution. We give sufficient conditions in terms of data that yield optimal order error estimates in L2 and H 1 . The convergence rate in the L norm is suboptimal, the same as in the corresponding finite element method, and almost optimal away from the corners. We also briefly consider the lumped mass modification and the backward Euler fully discrete method. © 2004 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq, 2004  相似文献   

15.
We consider a class of mixed finite element methods for nonlinear parabolic problems over a plane domain. The finite element spaces taken are Raviart-Thomas spaces of index k, k ? 0. We obtain optimal order L2- and almost optimal order L-error estimates for the finite element solution and order optimal L2-error estimates for its gradient. We also derive the error estimates for the time derivatives of the solution. Our results extend those previously obtained by Johnson and Thomée for the corresponding linear problems with k ? 1.  相似文献   

16.
An H^1-Galerkin mixed finite element method is discussed for a class of second order SchrSdinger equation. Optimal error estimates of semidiscrete schemes are derived for problems in one space dimension. At the same time, optimal error estimates are derived for fully discrete schemes. And it is showed that the H1-Galerkin mixed finite element approximations have the same rate of convergence as in the classical mixed finite element methods without requiring the LBB consistency condition.  相似文献   

17.
Based on a mixed finite element method, we construct semidiscrete approximations of the solution u and the flux term ?u+?u t of the semilinear Sobolev equations. The existence and uniqueness of the semidiscrete approximations are demonstrated and the error estimates of optimal rate in L 2 normed space are derived. And also we construct the fully discrete approximations of u and ?u+?u t and analyze the convergence of optimal rate in L 2 normed space.  相似文献   

18.
In this paper, we investigate the L ??(L 2)-error estimates and superconvergence of the semidiscrete mixed finite elementmethods for quadratic optimal control problems governed by linear hyperbolic equations. The state and the co-state are discretized by the order k Raviart-Thomas mixed finite element spaces and the control is approximated by piecewise polynomials of order k(k ?? 0). We derive error estimates for approximation of both state and control. Moreover, we present the superconvergence analysis for mixed finite element approximation of the optimal control problems.  相似文献   

19.
In this article, the existence of a global strong solution for all finite time is derived for the Kirchhoff's model of parabolic type. Based on exponential weight function, some new regularity results which reflect the exponential decay property are obtained for the exact solution. For the related dynamics, the existence of a global attractor is shown to hold for the problem when the non-homogeneous forcing function is either independent of time or in L(L2). With the finite element Galerkin method applied in spatial direction keeping time variable continuous, a semidiscrete scheme is analyzed, and it is also established that the semidiscrete system has a global discrete attractor. Optimal error estimates in L(H1) norm are derived which are valid uniformly in time. Further, based on a backward Euler method, a completely discrete scheme is analyzed and error estimates are derived. It is also further, observed that in cases where f = 0 or f = O(e0t) with γ0 > 0, the discrete solutions and error estimates decay exponentially in time. Finally, some numerical experiments are discussed which confirm our theoretical findings.  相似文献   

20.
In this article, the effect of numerical quadrature on the finite element Galerkin approximations to the solution of hyperbolic equations has been studied. Both semidiscrete and fully discrete schemes are analyzed and optimal estimates are derived in the L(H1), L(L2) norms, whereas quasi‐optimal estimate is derived in the L(L) norm using energy methods. The analysis in the present paper improves upon the earlier results of Baker and Dougalis [SIAM J Numer Anal 13 (1976), pp 577–598] under the minimum smoothness assumptions of Rauch [SIAM J Numer Anal 22 (1985), pp 245–249] for a purely second‐order hyperbolic equation with quadrature. © 2002 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq 18: 537–559, 2002; Published online in Wiley InterScience (www.interscience.wiley.com). DOI 10.1002/num.10022  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号