首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 625 毫秒
1.
The growth of porous oxide films on aluminum (99.99% purity), formed in 4% phosphoric acid was studied as a function of the anodizing voltage (23-53 V) using a re-anodizing technique and transmission electron microscopy (TEM) study. The chemical dissolution behavior of freshly anodized and annealed at 200 °C porous alumina films was studied. The obtained results indicate that porous alumina has n-type semiconductive behavior during anodizing in 4% phosphoric acid. During anodising, up to 39 V in the barrier layer of porous films, one obtains an accumulation layer (the thickness does not exceed 1 nm) where the excess electrons have been injected into the solid producing a downward bending of the conductive and valence band towards the interface. The charge on the surface of anodic oxide is negative and decreases with growing anodizing voltage. At the anodizing voltage of about 39 V, the charge on the surface of anodic oxide equals to zero. Above 39 V, anodic alumina/electrolyte junction injects protons from the electrolyte. These immobile positive charges in the surface layer of oxide together with an ionic layer of hydroxyl ions concentrated near the interface create a field, which produces an upward bending of the bands.  相似文献   

2.
Chemical dissolution of the barrier layer of porous oxide formed on thin aluminum films (99.9% purity) in the 4% oxalic acid after immersion in 2 mol dm−3 sulphuric acid at 50 °C has been studied. The barrier layer thickness before and after dissolution was calculated using a re-anodizing technique. It has been shown that above 57 V the change in the growth mechanism of porous alumina films takes place. As a result, the change in the amount of regions in the barrier oxide with different dissolution rates is observed. The barrier oxide contains two layers at 50 V: the outer layer with the highest dissolution rate and the inner layer with a low dissolution rate. Above 60 V the barrier oxide contains three layers: the outer layer with a high dissolution rate, the middle layer with the highest dissolution rate and the inner layer with a low dissolution rate. We suggest that the formation of the outer layer of barrier oxide with a high dissolution rate is linked with the injection of protons or H3O+ ions from the electrolyte into the oxide film at the anodizing voltages above 57 V.  相似文献   

3.
高质量规则多孔氧化铝模板的制备   总被引:16,自引:0,他引:16       下载免费PDF全文
马春兰 《物理学报》2004,53(6):1952-1955
在合适的条件下利用阳极氧化高纯铝片,可以获得多孔结构的氧化铝,其孔径大小和排列方式都很均匀.由于孔的深度不受限制,因此可以制备出孔深很大的多孔氧化铝.这种多孔结构可以用作制备纳米材料的模板.利用0.3mol/L的草酸溶液在40V的直流电压下,采用二步氧化法获得了高质量的氧化铝多孔模板,其典型孔径值为40—70nm,孔间距约110nm,深度可达毫米量级.分析了溶液温度对结果的影响,比较了单步法和两步法获得的样品的多孔结构,认为低温下的二步氧化法可以获得很好的多孔氧化铝模板. 关键词: 纳米材料 多孔氧化铝 二步氧化法  相似文献   

4.
The effect of the anodic current density, temperature and concentration of the oxalic acid on the volume expansion of porous alumina films formed from 1.8 μm thick aluminum films has been investigated. The volume expansion of the aluminum during oxidation was determined by the step height between the aluminum surface and the porous alumina surface at the edge of the anodized region, which was measured with a mechanical profiler with computer signal processing. Experiments showed, that the volume expansion factor as well as the cell dimensions is proportional to the anodizing voltage. The dependence of the volume expansion factor (k) on the anodizing voltage (U) has the linear nature. The volume expansion factor in the 4% solution of oxalic acid can be defined by the following equation: k=1.092+0.007U. It was established, that the dependence of the logarithm of the ion current density on the inverse volume expansion factor of porous alumina has the linear nature.  相似文献   

5.
We in-detail investigated the profile evolution processes of highly ordered alumina under the cyclic treatment of mild anodizing of aluminum foils in oxalic acid followed by etching in phosphoric acid. With the cyclic times increasing, the profiles of nanopores were gradually evolved into the parabola-like, trumpet-like and conical shape. Although the inserted etching itself nearly had no impact on the growth rate of the nanopores due to the rapid recovering of thinned barrier layer at the initial stage of next anodizing, overmuch etching could bring apparent side effects such as wall-breaking, thinning and taper-removing from the top down. The anodizing and etching kinetics and their synergetic effects in modulating different aspect ratios and open sizes of conical pores were studied systematically. These findings are helpful to tailor high-quality anodic alumina taper-pores with tunable profiles.  相似文献   

6.
The porous optical film has higher threshold of laser-induced damage than densified films, for the study of mechanism of laser-induced damage of porous optical film with ordered pore structure. Porous anodic alumina (PAA) film with high transmittance on glass substrate has been prepared. Aluminum film was deposited on glass substrate by means of resistance and electron beam heat (EBH) evaporation. Porous alumina was prepared in oxalic acid solution under different anodizing conditions. At normal incidence, the optical transmittance spectrum over 300-1000 nm spectra region was obtained by spectrophotometer. SEM was introduced to analysis the morphology of the porous alumina film. The pore aperture increased with the increase of anodizing voltage, which resulted in a rapid decrease of the pore concentration and the optical thickness of porous alumina film. Damage morphology of porous alumina film is found to be typically defects initiated, and the defect is the pore presented on the film.  相似文献   

7.
Microstructure and physical characteristics of porous silicon (PS), such as thickness, bulk porosity, dielectric permittivity, and refractive index depend directly on the production conditions, e.g., on the electrolyte composition, anodizing current density, duration of etching, etc. Various possibilities of applications of PS generate high interest towards elaboration of new or modified operative nondestructive methods for testing the microstructure characteristics of PS layer for the adjustment of its processing regimes.According to the mechanism of formation of PS and experimental data on the morphology of PS layers, a porous layer is represented as a structure with cylindrical pores of equal lengths piercing the silicon frame. This approximation allows considering the structure using the parallel plate model within parallel-connected capacitances of the silicon frame and the air or liquid dielectric-filled pores.A method for obtaining information on the volume porosity, thickness, and dielectric permittivity of a PS layer by means of two measurements of the structure capacitance—in dry air and when the pores are filled by a condensed medium having a dielectric permittivity strongly differing from that of air (e.g., methanol)—is described.Sufficiently good agreement has been revealed between the data calculated from the capacitance measurements and obtained by other methods.  相似文献   

8.
Chemical dissolution of the barrier layer of porous oxide films formed on aluminum foil (99.5% purity) in the 4% phosphoric acid after immersion in 2 mol dm−3 sulphuric acid at 50 °C has been studied. The barrier layer thickness before and after dissolution was determined using a re-anodizing technique. A digital voltmeter with a computer system was used to record the change in the anode potential with re-anodizing time. It has been found that the barrier layer material may consist of two or three regions according to the dissolution rate. The barrier oxide contains two layers at 35 V: the outer layer with the highest dissolution rate and the inner layer with low dissolution rate. The barrier oxide contains three layers at 40 V and above it: the outer layer with high dissolution rate, the middle layer with the highest dissolution rate and the inner layer with low dissolution rate. It has been shown that there is a dependence of the dissolution rate on the surface charge of anodic oxide film. Annealing of porous alumina films for 1 h at 200 °C leads to disappearance of layers with different dissolution rates in the barrier oxide. We explained this phenomenon by the absence of the space charge in the barrier oxide of such films.  相似文献   

9.
高芬  冯异 《光学技术》2007,33(4):609-612
采用二步阳极氧化法在草酸溶液中制备了多孔阳极氧化铝(PAA)薄膜。借助于扫描电子显微镜(SEM)分析了多孔阳极氧化铝薄膜的微观形貌。结果发现,在其表面孔径为30~40nm的六边形孔洞分布均匀,且垂直于表面平行生长。依据PAA透射光谱的实验数据,采用极值包络线算法计算出了PAA薄膜的复折射率以及光学能隙等光学常数。通过分析吸收系数与入射光子能量之间的关系发现,PAA薄膜具有直接带隙半导体的电子结构特征,而且由理论计算得到的PAA的带隙能与其光致发光谱的峰位能是一致的。  相似文献   

10.
《Composite Interfaces》2013,20(5):381-393
The glass-fiber-reinforced aluminum laminates were obtained by anodizing aluminum alloy under anodizing voltage of 10, 20, and 30?V in the 200?g/L H3PO4 electrolyte. Scanning electron microscopy (SEM), short beam, and tensile tests were employed to determine the surface morphology, interlaminar shear strength (ILSS) and tensile strength of laminates, respectively. The results also show that the epoxy penetrates into the pores of the anodic films, and this is the mechanism of adhesion. The ILSS and tensile strength of the anodized specimens (under 20?V) respectively increased by approximately 50 and 15% comparing with those of the non-anodized specimens. This increase of mechanical properties results from the porous surface of aluminum providing greater mechanical interlocking to epoxy. The ILSS and tensile strengths of the anodized specimens increased with the increase of anodizing voltage from 10 to 20?V; however, it decreased when the voltage further increased to 30?V. It is considered that the microstructure evolution of the porous films has a significant effect on the mechanical properties of the laminates.  相似文献   

11.
The adsorption of pyridine on coldly deposited Ag films annealed at temperatures ranging from 58 to 330 K, the porous surface topography of which has been investigated in part I of this work, has been studied by means of UPS, work function change and thermal desorption measurements. Pyridine induced work function changes have been employed to follow the surface diffusion of pyridine molecles into the pores of these Ag films. The surface diffusion is very slow below 60 K, but readily takes place at 130 K with an estimated activation energy of surface migration of Em ≈ 4 kcal/mol. Preadsorption of Xe into the pores of the films causes inhibition of pyridine diffusion into the pores. The onset of pyridine desorption from porous films is detected at ≈ 200 K while from flat films the desorption begins already at 150 K. The careful analysis of our data on the structure of the coldly deposited Ag films and the adsorption behavior of pyridine on these films as well as a survey of published SERS data lead us to conclude that the SERS active sites of coldly deposited Ag films are within the pores. This conclusion is in agreement with recent theoretical calculations.  相似文献   

12.
Anodic porous alumina layers were fabricated by a two-step self-organized anodization in 0.3 M oxalic acid under various anodizing potentials ranging from 30 to 60 V at two different temperatures (10 and 17 °C). The effect of anodizing conditions on structural features and pore arrangement of AAO was investigated in detail by using the dedicated executable publication combined with ImageJ software. With increasing anodizing potential, a linear increase of the average pore diameter, interpore distance, wall thickness and barrier layer thickness, as well as a decrease of the pore density, were observed. In addition, the higher pore diameter and porosity values were obtained for samples anodized at the elevated temperature, independently of the anodizing potential. A degree of pore order was investigated on the basis of Delaunay triangulations (defect maps) and calculation of pair distribution or angle distribution functions (PDF or ADF), respectively. All methods confirmed that in order to obtain nanoporous alumina with the best, hexagonal pore arrangement, the potential of 40 V should be applied during anodization. It was confirmed that the dedicated executable publication can be used to a fast and complex analysis of nanopore arrangement and structural features of nanoporous oxide layers.  相似文献   

13.
Surface coating techniques are commonly used to increase heat transfer and control critical heat flux. In this research, we used anodizing—an electrochemical coating process—to coat an aluminum oxide layer on the aluminum plain surface. This porous nanostructured coating has uniform, cylindrical, parallel nanochannels, and closed end pores. Next, we conducted saturated pool boiling tests on the anodized samples, using deionized water and the CHFs were measured. We found that porous nanostructured coatings, due to their improved surface characteristics, particularly wettability, increased CHF values and also critical heat flux increased linearly with decreasing the contact angle.  相似文献   

14.
n型有序多孔硅基氧化钨室温气敏性能研究   总被引:3,自引:0,他引:3       下载免费PDF全文
胡明  刘青林  贾丁立  李明达 《物理学报》2013,62(5):57102-057102
利用电化学腐蚀方法制备了n型有序多孔硅, 并以此为基底用直流磁控溅射法在其表面溅射不同厚度的氧化钨薄膜. 利用X射线和扫描电子显微镜表征了材料的成分和结构, 结果表明, 多孔硅的孔呈柱形有序分布, 溅射10 min的WO3薄膜是多晶结构, 比较松散地覆盖在整个多孔硅的表面. 分别测试了多孔硅和多孔硅基氧化钨在室温条件下对二氧化氮的气敏性能, 结果表明, 相对于多孔硅, 多孔硅基氧化钨薄膜对二氧化氮的气敏性能显著提高. 对多孔硅基氧化钨复合结构的气敏机理分析认为, 多孔硅和氧化钨薄膜复合形成的异质结对良好的气敏性能起到主要作用, 氧化钨薄膜表面出现了反型层引起了气敏响应时电阻的异常变化. 关键词: 有序多孔硅 氧化钨薄膜 二氧化氮 室温气敏性能  相似文献   

15.
采用二步阳极氧化法在草酸溶液中制备了高度有序的多孔阳极氧化铝(Porous Anodic Alumina,PAA)薄膜。以多孔氧化铝薄膜为模板,采用真空电子束蒸发的方法在多孔氧化铝模板上制备出了高度有序的金属银纳米点阵列体系。扫描电镜(SEM)测试结果表明,所制备的金属银纳米点阵列与多孔阳极氧化铝膜的多孔阵列具有完全相同的有序结构,阵列中银纳米颗粒的形状接近球形,其直径大约为70nm,与氧化铝模板的孔径基本一致。研究了高度有序银纳米点阵列的形成过程。  相似文献   

16.
多孔硅光致发光峰半峰全宽的压缩   总被引:3,自引:3,他引:0       下载免费PDF全文
硅发光对于在单一硅片上实现光电集成是至关重要的.目前已有的使硅产生发光的方法有:掺杂深能级杂质、掺稀土离子、多孔硅、纳米硅以及Si/SiO2超晶格.声空化所引发的特殊的物理、化学环境为制备光致发光多孔硅薄膜提供了一条重要的途径.实验表明,声化学处理对于改善多孔硅的微结构,提高发光效率和发光稳定性都是一项非常有效的技术.超声波加强阳极电化学腐蚀制备发光多孔硅薄膜,比目前通用的常规方法制备的样品显示出更优良的性质.这种超声波的化学效应源于声空化,即腐蚀液中气泡的形成、生长和急剧崩溃.在多孔硅的腐蚀过程中,由于超声波的作用增加了孔中氢气泡的逸出比率和塌缩,有利于孔沿垂直方向的腐蚀,使多孔硅光致发光峰的半峰全宽压缩到了3.8nm.  相似文献   

17.
Pure aluminum films were deposited on a B270 glass by electron beam evaporation technique. These aluminum films, which were used as anode, were put in sulfuric acid and oxalic acid to prepare porous alumina films using a two-step anodization method. The microstructure and laser damage characteristics of the alumina films were then tested. Results show that the microstructure of the alumina films formed in sulfuric acid and oxalic acid were vertical (cylindrical) pores with different diameters. The laser-damaged spot of the porous films was formed by innumerable small damaged pits with no mutual influence. Films prepared in different acids reveal different damage characteristics and reflect different mechanisms.  相似文献   

18.
Behavior of threading dislocations in porous heteroepitaxial gallium nitride (GaN) films has been studied using computer simulation by the two-dimensional discrete dislocation dynamics approach. A computational scheme, where pores are modeled as cross sections of cylindrical cavities, elastically interacting with unidirectional parallel edge dislocations, which imitate threading dislocations, is used. Time dependences of coordinates and velocities of each dislocation from dislocation ensembles under investigation are obtained. Visualization of current structure of dislocation ensemble is performed in the form of a location map of dislocations at any time. It has been shown that the density of appearing dislocation structures significantly depends on the ratio of area of a pore cross section to area of the simulation region. In particular, increasing the portion of pores surface on the layer surface up to 2% should lead to about a 1.5-times decrease of the final density of threading dislocations, and increase of this portion up to 15% should lead to approximately a 4.5-times decrease of it.  相似文献   

19.
A simple and well-designed synthesis procedure is proposed to fabricate silicalite-1 films on porous α-Al2O3 substrates on purpose of preventing the aluminum leaching. The continuous and 2 μm thick seed layer of silicalite-1 crystals is fabricated by using a spin coater. The first-time seeded growth is performed to synthesize a thin layer of intergrown ZSM-5 crystals on the silicalite-1 seed layer, where the use of low alkalinity and short synthesis time is to reduce the aluminum leaching. The intergrown layer of ZSM-5 crystals serves as a barrier to block the aluminum leaching from porous α-Al2O3 substrates in the second-time seeded growth, leading to the formation of ca. 11 μm thick intergrown and oriented silicalite-1 films with an extremely high Si/Al ratio. According to SEM images and XRD measurements, the as-synthesized silicalite-1 film is dense, continuous, and (1 0 1)-oriented. The electron probe microanalysis (EPMA) of the resulting film demonstrates that there is no aluminum leaching in the second-time seeded growth. The leaking tests confirm that non-zeolitic pores in the silicalite-1 film are negligible.  相似文献   

20.
A combined process of oblique angle magnetron sputtering and anodizing has been developed to tailor superhydrophobic surfaces with hierarchical morphology. Isolated submicron columns of single-phase Al-Nb alloys are deposited by magnetron sputtering at several oblique deposition angles on a scalloped substrate surface, with the gaps between columns increasing with an increase in the deposition angle from 70° to 110°. Then, the columnar films have been anodized in hot phosphate-glycerol electrolyte to form a nanoporous anodic oxide layer on each column. Such surfaces with submicron-/nano-porous structure have been coated with a fluoroalkyl phosphate layer to reduce the surface energy. The porous surface before coating is superhydrophilic with a contact angle for water is less than 10°, while after coating the contact angles are larger than 150°, being superhydrophobic. The beneficial effect of dual-scale porosity to enhance the water repellency is found from the comparison of the contact angles of the submicron columnar films with and without nanoporous oxide layers. The larger submicron gaps between columns are also preferable to increase the water repellency.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号