首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The dry etching characteristics of bulk single-crystal zinc-oxide (ZnO) and RF-sputtered indium-zinc-oxide (IZO) films have been investigated using an inductively coupled high-density plasma in Ar/IBr and Ar/BI3. In both plasma chemistries, the etch rate of ZnO is very similar to that of IZO, which indicates that zinc and indium atoms are driven by a similar plasma etching dynamics. IBr and BI3-based plasmas show no enhancement of the etch rate over pure physical sputtering under the same experimental conditions. The etched surface morphologies are smooth, independent of the discharge chemistry. From Auger electron spectroscopy, it is found that the near-surface stoichiometry is unchanged within experimental error, indicating a low degree of plasma-induced damage.  相似文献   

2.
The dry etching characteristics of transparent and conductive indium-zinc oxide (IZO) films have been investigated using an inductively coupled high-density plasma. While the Cl2-based plasma mixture showed little enhancement over physical sputtering in a pure argon atmosphere, the CH4/H2/Ar chemistry produced an increase of the IZO etch rate. On the other hand, the surface morphology of IZO films after etching in Ar and Ar/Cl2 discharges is smooth, whereas that after etching in CH4/H2/Ar presents particle-like features resulting from the preferential desorption of In- and O-containing products. Etching in CH4/H2/Ar also produces formation of a Zn-rich surface layer, whose thickness (∼40 nm) is well-above the expected range of incident ions in the material (∼1 nm). Such alteration of the IZO layer after etching in CH4/H2/Ar plasmas is expected to have a significant impact on the transparent electrode properties in optoelectronic device fabrication.  相似文献   

3.
CH4/H2-based discharges are attractive for dry etching of single crystal ZnO because of their non-corrosive nature. We show that substitution of C2H6 for CH4 increases the ZnO etch rate by approximately a factor of 2 both with and without any inert gas additive. The C2H6/H2/Ar mixture provides a strong enhancement over pure Ar sputtering, in sharp contrast to the case of CH4/H2/Ar. The threshold ion energy for initiating etching is 42.4 eV for C2H6/H2/Ar and 59.8 eV for CH4/H2/Ar. The etched surface morphologies were smooth, independent of the chemistry and the Zn/O ratio in the near-surface region was unchanged within experimental error after etching with both chemistries. The plasma etching improved the band-edge photoluminescence intensity and suppressed the deep level emission from the bulk ZnO under our conditions, due possibly to removal of surface contamination layer.  相似文献   

4.
MgCaO films grown by rf plasma-assisted molecular beam epitaxy and capped with Sc2O3 are promising candidates as surface passivation layers and gate dielectrics on GaN-based high electron mobility transistors (HEMTs) and metal-oxide semiconductor HEMTs (MOS-HEMTs), respectively. Two different plasma chemistries were examined for etching these thin films on GaN. Inductively coupled plasmas of CH4/H2/Ar produced etch rates only in the range 20-70 Å/min, comparable to the Ar sputter rates under the same conditions. Similarly slow MgCaO etch rates (∼100 Å/min) were obtained with Cl2/Ar discharges under the same conditions, but GaN showed rates almost an order of magnitude higher. The MgCaO removal rates are limited by the low volatilities of the respective etch products. The CH4/H2/Ar plasma chemistry produced a selectivity of around 2 for etching the MgCaO with respect to GaN.  相似文献   

5.
The effect of inert gas additive (He, Ar, Xe) to CH4/H2 discharges for dry etching of single crystal ZnO was examined. The etch rates were higher with Ar or Xe addition, compared to He but in all cases the CH4/H2-based mixtures showed little or no enhancement over pure physical sputtering under the same conditions. The etched surface morphologies were smooth, independent of the inert gas additive species and the Zn/O ratio in the near-surface region decreases as the mass number of the additive species increases, suggesting preferential sputtering of O. The plasma etching improved the band-edge photoluminescence intensity from the ZnO for the range of ion energies used here (290-355 eV), due possibly to removal of surface contamination layer.  相似文献   

6.
This paper reports a study of reactive ion etching (RIE) of n-ZnO in H2/CH4 and H2/CH4/Ar gas mixtures. Variables in the experiment were gas flow ratios, radio-frequency (rf) plasma power, and total pressure. Structural and electrical parameters of the etched surfaces and films were determined. Both the highest surface roughness and highest etching rate of ZnO films were obtained with a maximum rf power of 300 W, but at different gas flow ratios and working pressures. These results were expected because increasing the rf power increased the bond-breaking efficiency of ZnO. The highest degree of surface roughness was a result of pure physical etching by H2 gas without mixed CH4 gas. The highest etching rate was obtained from physical etching of H2/Ar species associated with chemical reaction of CH4 species. Additionally, the H2/CH4/Ar plasma treatment drastically decreased the specific contact and sheet resistance of the ZnO films. These results indicated that etching the ZnO film had roughened the surface and reduced its resistivity to ohmic contact, supporting the application of a roughened transparent contact layer (TCL) in light-emitting diodes (LEDs).  相似文献   

7.
The dry etching of indium tin oxide (ITO) layers deposited on glass substrates was investigated in a high density inductively coupled plasma (ICP) source. This innovative low pressure plasma source uses a magnetic core in order to concentrate the electromagnetic energy on the plasma and thus provides for higher plasma density and better uniformity. Different gas mixtures were tested containing mainly hydrogen, argon and methane. In Ar/H2 mixtures and at constant bias voltage (−100 V), the etch rate shows a linear dependence with input power varying the same way as the ion density, which confirms the hypothesis that the etching process is mainly physical. In CH4/H2 mixtures, the etch rate goes through a maximum for 10% CH4 indicating a participation of the radicals to the etching process. However, the etch rate remains quite low with this type of gas mixture (around 10 nm/min) because the etching mechanism appears to be competing with a deposition process. With CH4/Ar mixtures, a similar feature appeared but the etch rate was much higher, reaching 130 nm/min at 10% of CH4 in Ar. The increase in etch rate with the addition of a small quantity of methane indicates that the physical etching process is enhanced by a chemical mechanism. The etching process was monitored by optical emission spectroscopy that appeared to be a valuable tool for endpoint detection.  相似文献   

8.
《Current Applied Physics》2018,18(9):968-974
Pulse-modulated inductively coupled plasma reactive ion etching of nanometer-scale patterned CoFeB thin films was performed in CH4/O2/Ar gas mixture. As the pulse on-off duty ratio decreased, the etch selectivity of CoFeB/TiN slightly increased and the etch profiles were improved. Moreover, the etch selectivity of the CoFeB films and the etch profiles were improved with the increase in the pulse frequency of the plasma. X-ray photoelectron spectroscopy revealed that during the pulse-modulated etching in the CH4/O2/Ar gas mixture, some polymeric layers were formed on the CoFeB films, which helped prevent the lateral etching and increased the etch selectivity. Consequently, nanometer-scale etching of CoFeB thin films patterned with TiN hard masks could be achieved using pulsed-modulated plasma in CH4/O2/Ar gas mixture.  相似文献   

9.
《Applied Surface Science》2001,169(1-2):52-59
Wet chemical and plasma etch processes were developed for pattering of Sc2O3 films on GaN. Chlorine-based plasma chemistries produced a significant chemical enhancement of removal rate over pure Ar sputtering. The etching was anisotropic and did not significantly alter the surface composition of the Sc2O3 films. Reaction-limited wet etching in the HNO3/HCl/HF system was investigated as a function of solution formulation and temperature. The activation energy for the wet etching ranged from 8 to 14 kcal/mol and the etch rates were independent of solution agitation.  相似文献   

10.
《Applied Surface Science》2001,169(1-2):27-33
Several different plasma chemistries were investigated for dry etching of TiO2 thin films. Fluorine-based discharges produced the fastest etch rates (∼2000 Å min−1) and selectivities >1 for Si over TiO2. Chlorine-based discharges also showed a chemical enhancement over pure Ar sputtering and had selectivities <1 for Si over TiO2 for a range of plasma conditions. Methane–hydrogen discharges produced very slow etch rates, below those obtained with Ar sputtering. The etched surface morphologies of TiO2 were excellent in all three types of plasma chemistry. Small concentrations (2 at.%) of chlorine- or fluorine-containing residues were identified on the TiO2 surface after Cl2/Ar or SF6/Ar etching, but these residues were water soluble.  相似文献   

11.
The surface of InAs (1 1 1)A was investigated under plasmachemical etching in the gas mixture CH4/H2/Ar. Etching was performed using the RF (13.56 MHz) and ICP plasma with the power 30–150 and 50–300 W, respectively; gas pressure in the reactor was 3–10 mTorr. It was demonstrated that the composition of the subsurface layer less than 5 nm thick changes during plasmachemical etching.A method of deep etching of InAs involving ICP plasma and hydrocarbon based chemistry providing the conservation of the surface relief is proposed. Optimal conditions and the composition of the gas phase for plasmachemical etching ensuring acceptable etch rates were selected.  相似文献   

12.
The stabilities of amorphous indium‐zinc‐oxide (IZO) thin film transistors (TFTs) with back‐channel‐etch (BCE) structure are investigated. A molybdenum (Mo) source/drain electrode was deposited on an IZO layer and patterned by hydrogen peroxide (H2O2)‐based etchants. Then, after etching the Mo layer, SF6 plasma with direct plasma mode was employed and optimized to improve the bias stress stability. Scanning electron microscopy and X‐ray photoelectron spectroscopic analysis revealed that the etching residues were removed efficiently by the plasma treatment. The modified BCE‐ TFTs showed only threshold voltage shifts of 0.25 V and –0.20 V under positive/negative bias thermal stress (P/NBTS, VGS = ±30 V, VDS = 0 V and T = 60 °C) after 12 hours, respectively. (© 2014 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

13.
The etch rates, surface morphology and sidewall profiles of features formed in GaN/InGaN/AlGaN multiple quantum well light-emitting diodes by Cl2-based dry etching are reported. The chlorine provides an enhancement in etch rate of over a factor of 40 relative to the physical etching provided by Ar and the etching is reactant-limited until chlorine gas flow rates of at least 50 standard cubic centimeters per minute. Mesa sidewall profile angle control is possible using a combination of Cl2/Ar plasma chemistry and SiO2 mask. N-face GaN is found to etch faster than Ga-face surfaces under the same conditions. Patterning of the sapphire substrate for improved light extraction is also possible using the same plasma chemistry.  相似文献   

14.
Sample of cellulose nitrate (Russian) is exposed to 18 40 Ar ions. The bulk etch rate has been studied at different etching temperatures and the activation energy for bulk etch rate has been calculated. The etched track lengths are measured for different etching times. The energy loss rate and range of 18 40 Ar ions in CN(R) is also calculated. The critical threshold value for etchable track in CN(R) is determined by comparing the theoretical and experimental values of track length. The response curve of CN(R) is also presented.  相似文献   

15.
氩气掺入对类金刚石沉积过程的影响   总被引:1,自引:0,他引:1       下载免费PDF全文
在电子助进化学气相沉积(EACVD)类金刚石薄膜中,使用和比较CH4/H2与CH4/H2/Ar两种体系,用静电探针测量这两种体系的电子温度、电子密度,结果表明,在CH4/H2/Ar体系中,电子密度较高,使成膜的速率增加。 关键词:  相似文献   

16.
We fabricate the aluminum-doped zinc oxide (AZO) subwavelength gratings (SWG) on Si and glass substrates by holographic lithography and sequent CH4/H2/Ar reactive ion etching process. The etch selectivity of AZO over photoresist mask as well as the nano-scale shape is optimized for better antireflection performance. To analyze the antireflective properties of AZO SWG surface, the optical reflectivity is measured and then calculated together with a rigorous coupled-wave analysis. The reflectance spectrum can be considerably changed by incorporating the SWG into AZO film. As the SWG height of AZO on Si substrate increases, the magnitude of interference oscillations in the reflectance spectrum tends to be reduced with the larger difference between its maxima. The use of optimized SWG can significantly reduce the surface reflection of AZO film at the desired wavelengths. The measured reflectance data of AZO SWG are reasonably consistent with the simulation results. No considerable change in transmission characteristics is observed for AZO SWG structures.  相似文献   

17.
We fabricate the aluminum-doped zinc oxide (AZO) subwavelength gratings (SWG) on Si and glass substrates by holographic lithography and sequent CH4/H2/Ar reactive ion etching process. The etch selectivity of AZO over photoresist mask as well as the nano-scale shape is optimized for better antireflection performance. To analyze the antireflective properties of AZO SWG surface, the optical reflectivity is measured and then calculated together with a rigorous coupled-wave analysis. The reflectance spectrum can be considerably changed by incorporating the SWG into AZO film. As the SWG height of AZO on Si substrate increases, the magnitude of interference oscillations in the reflectance spectrum tends to be reduced with the larger difference between its maxima. The use of optimized SWG can significantly reduce the surface reflection of AZO film at the desired wavelengths. The measured reflectance data of AZO SWG are reasonably consistent with the simulation results. No considerable change in transmission characteristics is observed for AZO SWG structures.  相似文献   

18.
本文利用266 nm波长的激光及程序升温脱附的方法研究了甲醇在ZnO(0001)表面的光催化反应. TPD结果显示部分的CH3OH以分子的形式吸附在ZnO(0001)表面,而另外一部分在表面发生了解离. 实验过程中探测到H2,CH3·,H2O,CO,CH2O,CO2和CH3OH这些热反应产物. 紫外激光照射实验结果表明光照可以促进CH3OH/CH3O·解离形成CH2O,在程序升温或光照的过程中它又可以转变为HCOO-. CH2OHZn与OHad反应在Zn位点上形成H2O分子. 升温或光照都能促进CH3O·转变为CH3·. 该研究对CH3OH在ZnO(0001)表面的光催化反应机理提供了一个新的见解.  相似文献   

19.
Chemically assisted ion beam etching (CAIBE) involving an Ar ion beam and a halogen ambient gas (Cl2, IBr3) has been used to etch high-quality laser facets for InGaAsP/InP bulk lasers (1.55 m). We achieved eich rates of 40.0–75.0 nm min–1 at substrate temperatures between-5 and +10°C. These low temperatures have allowed us to utilize UV-baked photoresists as well as PMMA as etch masks, facilitating very simple process development. Higher substrate temperatures (50 to 120°C) yield still higher etch rates, but at the expense of severely degraded surface morphologies. Angle resolved x-ray photoelectron spectroscopy (XPS) was investigated for observing etched InP surfaces. A disproportioned surface has been detected after etching in the higher temperature range; low temperatures yield stoichiometric surfaces.  相似文献   

20.
Laser-induced etching of polycrystalline Al2O3TiC material by tightly focused CW Ar ion laser has been investigated in both H3PO4 and KOH solutions with influence of an external electric field. It is found that a weak external electric field will change the ions distribution in chemical solutions and cause obvious change in etching behavior. The laser etching in a H3PO4 solution can be enhanced by both positive and negative biases of the substrate. While etching in a KOH solution, a positive bias can enhance the etching reaction, whereas a negative bias can suppress the etching process. It is also found that the external electric field can always enhance the mass transfer between reaction products and fresh etchant in a H3PO4 solution. It is revealed that the supply of H+ ions contributes to the etching process in a H3PO4 solution, while the supply of OH ions contributes to the etching process in a KOH solution. The electric field can be used to control the etching process to achieve fast tuning and higher accuracy.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号