首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
纳米压印多孔硅模板的研究   总被引:2,自引:0,他引:2       下载免费PDF全文
张铮  徐智谋  孙堂友  徐海峰  陈存华  彭静 《物理学报》2014,63(1):18102-018102
纳米压印模板通常采用极紫外光刻、聚焦离子束光刻和电子束光刻等传统光刻技术制备,成本较高.寻找一种简单、低成本的纳米压印模板制备方法以提升纳米压印光刻技术的应用成为研究的重点与难点.本文以多孔氧化铝为母模板,采用纳米压印光刻技术对纳米多孔硅模板的制备进行了研究.在硅基表面成功制备出纳米多孔阵列结构,孔间距为350—560 nm,孔径在170—480 nm,孔深为200 nm.在激发波长为514 nm时,拉曼光谱的测试结果表明,相对于单面抛光的硅片,纳米多孔结构的硅模板拉曼光强有了约12倍左右的提升,对提升硅基光电器件的应用具有重要的意义.最后,利用多孔硅模板作为纳米压印母模板,通过热压印技术,成功制备出了聚合物纳米柱软模板.  相似文献   

2.
We attempted to fabricate patterned media using the electrochemical deposition process along with nanopatterned substrates prepared by the electron beam lithography (EBL), UV nanoimprint lithography (UV-NIL), and spin-on-glass nanoimprint lithography (SOG-NIL) approaches. CoPt was electrodeposited into the nanopatterned substrates and chemical mechanical polishing was carried out to planarize the surface. It was clarified that CoPt nanodot arrays were successfully deposited into the patterned nanopores fabricated by UV-NIL and SOG-NIL as well as by EBL with high area selectivity and uniformity. The density of the CoPt nanodot arrays deposited into the nanopores fabricated by EBL was equal up to an areal recording density of 250 Gbit/in2.  相似文献   

3.
张铮  徐智谋  孙堂友  何健  徐海峰  张学明  刘世元 《物理学报》2013,62(16):168102-168102
硅表面固有的菲涅耳反射, 使得硅基半导体光电器件(如太阳能电池、红外探测器)表面有30%以上的入射光因反射而损失掉, 严重影响着器件的光电转换效率. 寻找一种方法降低硅基表面的反射率, 进而提高器件的效率成为近年来研究的重点.本文基于纳米压印光刻技术, 在2 英寸单晶硅表面制备出周期530 nm, 高240 nm的二维六角截顶抛面纳米柱阵列结构. 反射率的测试表明, 当入射光角度为8° 时, 有纳米结构的硅片相对于无纳米 结构的硅片来讲, 在400到2500 nm波长范围内的反射率有很明显的降低, 其中, 800到2000 nm波段的反射率都小于10%, 在波长1360 nm附近的反射率由31%降低为零. 结合等效介质理论和严格耦合波理论对结果进行了分析和验证. 关键词: 纳米压印 截顶抛物面阵列 抗反射 等效介质理论  相似文献   

4.
Arrays of metal nanoparticles with nanometer-scale gaps between the particles is highly interesting for plasmonic field enhancement applications. We report a simple method to fabricate arrays of closely spaced Au particles with inter-particle separation down to 20 nm. We used extreme ultraviolet interference lithography (EUV-IL) and a mechanical press to fabricate two-dimensional arrays of Au nanoparticles. Lithographically produced particle arrays were modified by hot pressing in a nanoimprint machine and the gap was varied in a range from 50 nm to below 20 nm. Optical measurement shows two resonances at 520 nm and 620 nm, with the latter gaining strength as the gap is reduced. The experimental and theoretical investigations using a FDTD algorithm demonstrate that the low-energy resonance can be assigned to a collective surface plasmon resonance arising from the strong near-field coupling between the nanoparticles. Surface Enhanced Raman Spectroscopy (SERS) experiments performed on a model molecule (BPE) show a large gain in signal intensity as a result of the reduced gaps between the particles.  相似文献   

5.
A simple and highly effective method to the replication of soft mold based on the anodic aluminum oxide (AAO) membrane was developed. The soft mold with nanopillar arrays was composed of the toluene diluted PDMS layer supported by the soft PDMS. A water contact angle as high as 114° was achieved. The hexagonally well-order arrays of holes of nanometer dimensions, ∼100 nm pore diameter and 125 nm center-to-center pore, could be gained over large areas by UV-nanoimprint lithography (UV-NIL) with the replicated soft PDMS mold. It is expected that the developed soft mold would find applications in light emitting diodes devices.  相似文献   

6.
High-ordered silicon nanoarrays were prepared using direct nanosphere lithography combined with thermal oxidation. Atomic force microscope (AFM) images of the silicon arrays show that the patterns of polystyrene (PS) template are well transferred to the silicon surface. The size and morphology of the nanoarrays can be controlled effectively by varying the plasma-therm reactive ion etching (RIE) or thermal oxidation parameters. The field emission studies revealed that the typical turn-on field was about 7-8 V/μm with emission current reached 1 μA/cm2. It is also found that the field emission current is highly dependent on the morphology of these Si nanoarrays.  相似文献   

7.
Periodic Au nanoparticle arrays were fabricated on silica substrates using nanosphere lithography. The identical single-layer masks were prepared by self-assembly of polystyrene nanospheres with radius R = 350 nm. The structural characterization of nanosphere masks and periodic particle arrays was investigated by atomic force microscopy. The nonlinear optical properties of the Au nanoparticle arrays were determined using a single beam z-scan method at a wavelength of 532 nm with laser duration of 55 ps. The results show that periodic Au nanoparticle arrays exhibit a fast third-order nonlinear optical response with the nonlinear refractive index and nonlinear absorption coefficient being n2 = 6.09 × 10−6 cm2/kW and β = −1.87 × 10−6 m/W, respectively.  相似文献   

8.
Via a specially widened anodic aluminum oxide (AAO) pore arrays, carbon nanodot arrays with uniform size and high density were obtained through filtered cathodic arc plasma (FCAP) technique. The AAO template was prepared in oxalic acid by multi-steps to get a specially enlarged opening which plays an important role in the deposition of nanodots. The morphology of the nanodots was studied by a field emission scanning electron microscopy (FESEM). The diameter of the as-prepared nanodot demonstrated here is about 100 nm at the bottom and less than 40 nm at the top, and the density was estimated to 1010 cm−2. Field emission properties of the nanodot arrays were investigated and a low threshold field of 5.1 V/μm at 10 mA/cm2 was obtained. In this paper, the carbon nanodot arrays grown as replicas of the specially widened AAO template may support a strategy to realize the fabrication of nanodot arrays with various materials.  相似文献   

9.
Nanosphere lithography (NSL) masks were created by spin-coating of polystyrene particles onto silicon surfaces. Fluorinated hydrocarbon films were coated on the nanosphere lithography masks using plasma-enhanced chemical vapor deposition (PECVD) to obtain ordered arrays of fluorinated hydrocarbon. Atomic force microscope images show hexagonally ordered nanodots of dimension 225 ± 11 nm with a height of 23 ± 4 nm. Every hexagon encloses a circular ring of diameter 540 ± 24 nm having a height and width of 13.5 ± 0.6 nm and 203 ± 16 nm, respectively. FTIR analysis shows two distinct zones of atomic bonding of CHx and CFx in the plasma coated ordered fluorinated hydrocarbon films.  相似文献   

10.
The control of nucleation site size and density for Au catalyst-driven growth of GaN nanowires is reported. By using initial Au film thicknesses of 15-50 Å we have shown that annealing between 300 and 900 °C creates Au cluster size in the range 30-100 nm diameter with a cluster density from 300 to 3500 μm−2.Conventional optical lithography to create parallel Au stripes shoes that a minimum separation of ∼15 μm is needed to avoid overlap of wires onto neighboring lines with our growth conditions that yield wires of this same length. The GaN nanowires exhibit strong band-edge photoluminescence and total resistances of 1.2 × 108-5.5 × 106 Ω in the temperature range from 240 to 400 K, as determined for the temperature-dependent current-voltage characteristics.  相似文献   

11.
The triangular-shaped Au/ZnO nanoparticle arrays were fabricated on fused quartz substrate using nanosphere lithography. The structural characterization of the Au/ZnO nanoparticle arrays was investigated by atomic force microscopy. The absorption peak due to the surface plasmon resonance of Au particles at the wavelength of about 570 nm was observed. The nonlinear optical properties of the nanoparticle arrays were measured using the z-scan method at a wavelength of 532 nm with pulse duration of 10 ns. The real and imaginary part of third-order nonlinear optical susceptibility, Re χ(3) and Im χ(3), were determined to be 1.15 × 10−6 and −5.36 × 10−7 esu, respectively. The results show that the Au/ZnO nanoparticle arrays have great potential for future optical devices.  相似文献   

12.
Manimaran  M.  Vaya  P.R.  Kanayama  T. 《Optical and Quantum Electronics》2000,32(10):1191-1199
AlGaAs–GaAs based quantum well nanopillar arrays are fabricated by using the UV lithography and the chlorine based reactive ion etching. The nanostructure is fabricated so as to get the confinement of carriers within the i-GaAs quantum well layer of 9 nm thick sandwiched between two barrier layers of Al0.33Ga0.67As of 11 nm thick in order to induce the possible light emission from the quantum well region. The size of pillars is obtained from SEM analysis. The number of pillars available within the 1 m2 mesa size is found to be around 400 having the pillar size between 10 and 50 nm. Electroluminesence (EL) is detected from the nanopillars when applying a forward bias voltage of 1.3 V and the emitted light is observed at around 830 nm.  相似文献   

13.
The present work reports design and fabrication of porous silicon based one-dimensional (1D) photonic crystal. Distributed Bragg reflector (DBR) is a 1D photonic crystal composed of multilayer stack of high and low refractive index layers. Design of porous silicon DBR is a complex one and requires appropriate control in optical parameters of its constituent layers. In order to design DBR, two porous silicon single layer samples were fabricated using current density of 10 and 50 mA/cm2. Optical characterization of single layer samples showed series of interference fringes. Reflective interferometric Fourier transform spectroscopy (RIFTS) method was employed to determine optical constants of porous silicon single layers. DBR simulation was carried out based on transfer matrix method. DBR was then fabricated using optical parameters obtained from RIFTS method. Reflection bandwidth of prepared DBR was found to be 216 nm, which is comparable to the simulated value of 203 nm.  相似文献   

14.
Flame synthesis of carbon nanotubes for panel field emission lamp   总被引:2,自引:0,他引:2  
Multi-walled carbon nanotubes (CNTs) were synthesized on the surfaces of Ni-alloy plated Fe-wires with the diameter of 2 mm using a conventional laboratory ethanol (C2H5OH) flame method at 560 °C. SEM showed that the product had bush-shaped micron-structures with diameters from 100 to 450 nm and lengths of over 1.0 μm. TEM revealed that the micron-structures were composed of multi-walled nanotube bundles with the diameters of about 50 nm. The test on the diode configuration field emission of the Fe-wire arrays was performed. The onset electric field was 2.95 V/μm and the emission current can reach 50 mA/cm2 at an electric field of 9 V/μm. The average fluctuation of the emission current density was less than 7%. The result suggests that the field emission was uniform and the present technique was feasible to fabricate Panel Field Emission Lamp (PFEL) with arrays of carbon nanotubes. PFEL has the advantages of high luminescence as well as stability, and thus, it can be used to replace ordinary lights.  相似文献   

15.
Germanium (Ge) nanodots of about 7 nm size and 2 × 1012 cm−2 density were formed on slightly oxidized silicon surfaces. The spherical aberration corrected scanning transmission electron microscopy (Cs-corrected STEM) revealed clearly the size, aspect ratio and interface structures among the nanodots, oxide layers and silicon substrates. In particular, a Ge-rich thin layer underneath SiO2 layers was found for the first time in these kinds of samples. The elemental distribution through the interface was analyzed by EELS and EDX in the Cs-corrected STEM. The high-resolution Cs-corrected annular dark field (ADF)-STEM image shows clearly the existence of a Ge-rich crystalline layer and its geometry against the oxide layer from the Z-contrast image. A new growth model of the Ge nanodots on slightly oxidized silicon surfaces was proposed.  相似文献   

16.
High throughput and low cost fabrication techniques in the sub-micrometer scale are attractive for the industry. Laser interference lithography (LIL) is a promising technique that can produce one, two and three-dimensional periodical patterns over large areas. In this work, two- and four-beam laser interference lithography systems are implemented to produce respectively one- and two-dimensional periodical patterns. A high-power single pulse of ∼8 ns is used as exposure process. The optimum exposure dose for a good feature patterning in a 600 nm layer of AZ-1505 photoresist deposited on silicon wafers is studied. The best aspect ratio is found for a laser fluence of 20 mJ/cm2. A method to control the width of the sub-micrometer structures based on controlling the resist thickness and the laser fluence is proposed.  相似文献   

17.
FePt nanoparticles of uniform sizes, compositions, and crystal structures can be obtained by chemical synthesis. Additionally, the nanoparticles can be well dispersed by the adsorption of a surfactant on the nanoparticle surface. Previously, the immobilization of FePt nanoparticles on a thermal oxide Si substrate was carried out by chemical synthesis, utilizing the Pt-S bonding between the -SH functional group in (3-mercaptopropyl)trimethoxysilane, MPTMS and Pt in FePt nanoparticles. However, controlling FePt nanoparticle arrays by this synthesis method was very difficult. In the present study, we attempted to control the distortion of the arrangement of FePt nanoparticles using an MPTMS layer modified with a silane coupling reaction and a geometrical structure prepared by ultraviolet nanoimprint lithography (UV-NIL). In this study, the hole-patterns used for the geometrical structure on Si(1 0 0) were 200 nm wide, 40 nm deep, and had a 500 nm pitch. The 5.6 nm FePt nanoparticles were used to coat the hole-patterns by using a picoliter pipette. An XHR-SEM image clearly revealed that the FePt nanoparticles were successfully arranged as a single layer with an average pitch of 10.0 nm by Pt-S bonding in the hole-patterns on Si(1 0 0).  相似文献   

18.
The paper reports on the characterization of bipolar resistive switching materials and their integration into nanocrossbar structures, as well as on different memory operation schemes in terms of memory density and the challenging problem of sneak paths. TiO2, WO3, GeSe, SiO2 and MSQ thin films were integrated into nanojunctions of 100×100 nm2. The variation between inert Pt and Cu or Ag top electrodes leads to valence change (VCM) switching or electrochemical metallization (ECM) switching and has significant impact on the resistive properties. All materials showed promising characteristics with switching speeds down to 10 ns, multilevel switching, good endurance and retention. Nanoimprint lithography was found to be a suitable tool for processing crossbar arrays down to a feature size of 50 nm and 3D stacking was demonstrated. The inherent occurrence of current sneak paths in passive crossbar arrays can be circumvented by the implementation of complementary resistive switching (CRS) cells. The comparison with other operation schemes shows that the CRS concept dramatically increases the addressable memory size to about 1010 bit.  相似文献   

19.
R.S. Dubey  D.K. Gautam 《Optik》2011,122(6):494-497
In this paper, we studied the optical and physical properties of electrochemically prepared porous silicon layers. The atomic force microscopy analysis showed that the etching depth, pore diameter and surface roughness increase as the etching time increased from 30 to 50 mA/cm2. By tuning two current densities J1 = 50 mA/cm2 and J2 = 30 mA/cm2, two samples of 1D porous silicon photonic crystals were fabricated. The layered structure of 1D photonic crystals has been confirmed by scanning electron microscopy measurement which showed white and black strips of two distinct refractive index layers. Finally, the measured reflectance spectra of 1D porous silicon photonic crystals were compared with simulated results.  相似文献   

20.
The fabrications of size-tunable periodic arrays of nickel metal and silicide nanodots on (0 0 1)Si substrates using polystyrene (PS) nanosphere lithography (NSL) and heat treatments have been investigated. The growth of epitaxial NiSi2 was found to be more favorable for the Ni metal nanodot arrays. The effect becomes more pronounced with a decrease in the size of the Ni nanodots. The sizes of the epitaxial NiSi2 nanodots were tuned from 38 to 110 nm by varying the diameter of the PS spheres and heat treatment conditions. These epitaxial NiSi2 nanodots formed on (0 0 1)Si were found to be heavily faceted and the faceted structures were more prone to form at higher temperatures. Based on TEM, HRTEM and SAED analysis, the faceted NiSi2 nanodots were identified to be inverse pyramids in shape. Compared with the NiSi2 nanodot arrays formed using single-layer PS sphere masks, the epitaxial NiSi2 nanodot arrays formed from the double-layer PS sphere templates exhibit larger interparticle spacings and smaller particle sizes. Since the nanoparticle sizes, shapes and interparticle spacings can be adjusted by tuning the diameter of the PS spheres, stacking conditions, and heat treatment conditions, the PS NSL technique promises to be an effective patterning method for growth of other nanostructures.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号