首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 921 毫秒
1.
Influence of DC electric field on carbon nanotube (CNT) growth in chemical vapor deposition is studied. Investigation of electric field effect in van der Waals interaction shows that increase in DC electric field raises the magnitude of attractive term of the Lennard-Jones potential. By using a theoretical model based on phonon vibrations of CNT on catalyst, it is shown that there is an optimum field for growth. Also it is observed that CNT under optimum electric field is longer than CNT in the absence of field. Finally, the relation between optimum DC electric field and type of catalyst is investigated and for some intervals of electric field, the best catalyst is introduced, which is very useful for experimental researches.  相似文献   

2.
A procedure for optimizing a field-emission cathode based on carbon nanotubes (CNTs) is developed. An array of identical equidistant vertical CNTs is considered. The optimization procedure takes into account the effect of screening of an electric field by neighboring nanotubes by solving a Laplace equation and the thermal instability of nanotubes, which limits the emission current density of a nanotube, by solving a heat conduction equation. The relation between the emission current and the applied voltage is described by the Fowler-Nordheim relationship containing the CNT tip temperature as a parameter. Upon optimization, the optimum distance between CNTs that ensures the maximum emission current density is calculated. The calculation results demonstrate that this parameter depends substantially on both the applied voltage and the nanotube geometry. These dependences are weakly sensitive to the choice of the transport coefficients (thermal conductivity, electrical conductivity) of nanotubes.  相似文献   

3.
Carbon nanotubes (CNTs) have attracted considerable attention as possible routes to device miniaturization due to their excellent mechanical, thermal, and electronic properties. These properties show great potential for devices such as field emission displays, transistors, and sensors. The growth of CNTs can be explained by interaction between small carbon patches and the metal catalyst. The metals such as nickel, cobalt, gold, iron, platinum, and palladium are used as the catalysts for the CNT growth. In this study, diamond-like carbon (DLC) was used for CNT growth as a nonmetallic catalyst layer. DLC films were deposited by a radio frequency (RF) plasma-enhanced chemical vapor deposition (RF-PECVD) method with a mixture of methane and hydrogen gases. CNTs were synthesized by a hot filament plasma-enhanced chemical vapor deposition (HF-PECVD) method with ammonia (NH3) as a pretreatment gas and acetylene (C2H2) as a carbon source gas. The grown CNTs and the pretreated DLC films were observed using field emission scanning electron microscopy (FE-SEM) measurement, and the structure of the grown CNTs was analyzed by high resolution transmission scanning electron microscopy (HR-TEM). Also, using energy dispersive spectroscopy (EDS) measurement, we confirmed that only the carbon component remained on the substrate.  相似文献   

4.
Carbon nanotube (CNT)/metal interface interaction is critical to the mechanical properties of CNT-reinforced metal matrix composites (MMCs). In this paper, in order to realize the chemical modification of the interface interaction between CNTs and Mg matrix, different types of defects (monovacancy, carbon and oxygen adatoms, as well as p-type boron and n-type nitrogen substitution) are introduced in CNTs to investigate the effect of the defects on the interface interaction (Eib) between CNT and Mg (0 0 0 1) surface. Moreover, two models (adsorption model and interface model) are compared and validated to investigate the interface interaction. It is revealed that the CNT with the carbon adatom has the highest Eib with the Mg (0 0 0 1), and the effect of boron doping on Eib is superior to the intermediate oxygen which has already been proved experimentally in the enhancement of the interface interaction in MMCs. In terms of the electronic structure analysis, we reveal the micro-mechanism of the increase of Eib under the action of different types of defects, and propose that the presence of holes (boron dopant) and the unsaturated electrons in CNTs can generate the chemical interaction between CNT and Mg matrix effectively. Our results are of great scientific importance to the realization of robust interfacial bonding between CNTs and Mg matrix via the reinforcement modification, so as to enhance the mechanical properties of CNTs reinforced Mg matrix composites.  相似文献   

5.
Growth of carbon nanotube (CNT) films with good field emission properties on glass is very important for low cost field emission display (FED) applications. In addition to Ni, Co and Fe, Cu can be a good catalyst for CNT growth on glass, but due to diffusion into SiO2 it is difficult to control the CNTs density and uniformity. In this paper, four metal barrier layers (W, Ni, Cr, Ti) were deposited by dc magnetron sputtering on glass to reduce the Cu diffusion. As-grown CNT films showed various morphologies with the use of different barrier metals. CNTs with uniform distribution and better crystallinity can be synthesized only on Ti/Cu and W/Cu. Voltage current measurements indicate that better field emission properties of CNT films can be obtained on titanium and tungsten barriered Cu, while chromium and nickel are not suitable barrier candidates for copper in CNT-FED applications because of the reduced emission performance. PACS 81.05.Uw; 61.46.Fg; 85.45.Db; 66.30.-h  相似文献   

6.
解滨  陈波 《光学技术》2004,30(4):403-405
利用有限元软件ANSYS,对碳纳米管的最佳阵列密度进行了分析。针对碳纳米管阵列静电场分布的特点,建立了碳纳米管的模型,确定了模型的边界条件。为了便于对计算结果进行对照,在分析时采用的参数是:阵列周期T=2000nm,单根碳纳米管长度L=1μm,顶端半径r=2nm。通过计算得到了单根碳纳米管的场增强因子为321。在长度L和顶端半径r不变的情况下,使用了参数化设计语言,计算了在不同周期(200~4000μm)下碳纳米管场增强因子随周期变化的情况,进一步利用Fowler Nordheim函数得到最佳阵列周期(1600μm)。结果证明,利用有限元软件,其分析过程不仅正确性,而且实用,并且为此类问题的解决提供了一个通用的方法。  相似文献   

7.
The problems of the electric field action on carbon nanotubes (CNTs) during their growth and under the electron field emission conditions are considered. The relations determining the growth rate of an extended structure under the action of the electric field are established. The relation connecting the angle of orientation of a CNT inclined to the substrate surface and the applied electric field is used for computing current-voltage characteristics of the cathode consisting of inclined CNTs. The degree of deviation of these characteristics from the Fowler-Nordheim classic dependence is determined, on the one hand, by the parameters characterizing the CNT spread over the angles of inclination and, on the other hand, by the value of the Young modulus characterizing the bending stiffness of a nanotube. It is shown that in zero external electric field, a certain effect on the CNT orientation can be produced by the CNT potential relative to the substrate, which is due to the effect of the contact potential difference.  相似文献   

8.
This work examines the recent developments in non-traditional catalyst-assisted chemical vapour deposition of carbon nanotubes (CNTs) with a view to determining the essential role of the catalyst in nanotube growth. A brief overview of the techniques reliant on the structural reorganization of carbon to form CNTs is provided. Additionally, CNT synthesis methods based upon ceramic, noble metal, and semiconducting nanoparticle catalysts are presented. Experimental evidence is provided for CNT growth using noble metal and semiconducting nanoparticle catalysts. A model for CNT growth consistent with the experimental results is proposed, in which the structural reorganization of carbon to form CNTs is paramount.  相似文献   

9.
A theoretical investigation of the dynamic response of interacting carbon nanotubes (CNTs) dispersed in a liquid medium under alternating current electric fields is presented. The proposed modeling strategy is based on the dielectrophoretic theory and classical electrodynamics of rigid bodies, and considers the coupled rotation-translation motion of interacting CNTs represented as electrical dipoles. Based on experimental evidence, the parameters which are expected to cause a major contribution to the CNTs' motion are investigated for different initial configurations of CNTs. It is predicted that high electric field frequencies, long CNTs, high values of electrical permittivity and conductivity of the CNTs immersed in solvents of high polarity promote faster equilibrium conditions, achieved by CNT tip-to-tip contact and alignment along the electric field direction. For the majority of the scenarios, CNT alignment along the field direction is predicted as the first event, followed by the translation of aligned CNTs until the tip-to-tip contact condition is reached. For systems with interacting CNTs with different lengths, equilibrium of the shorter CNT is achieved faster. Predictions also show that the initial rotation angles and initial location of CNTs have a paramount influence on the evolution of the system towards the equilibrium configuration.  相似文献   

10.
We fabricated carbon nanotube (CNT) emitters by a spray method using a CNT suspension with ethanol. Indium with a low melting pointing metal or indium tin oxide (ITO) was deposited on the glass substrate. The CNTs were sprayed on these layers and thermally annealed. The sprayed CNTs on an ITO were obtained a high emission current density, field enhancement factor, and a uniform emission pattern than the sprayed CNTs on an ITO layer. We found that the sprayed emitters on the indium layer had good field emission characteristics because of the strong adherence between the metal layer and CNTs.  相似文献   

11.
S. Behnia  F. Rahimi 《Physics letters. A》2018,382(45):3274-3280
A theoretical analysis of controllable metal–insulator transition is performed by carrying out a quantum chaos analysis for a single-walled carbon nanotube which is affected by topological Stone–Wales defect. Nanotubes have recently attracted attention as promising materials for flexible nanoelectronic devices. Individual topological Stone–Wales defects have been identified experimentally in carbon nanotubes (CNTs) and graphene. The findings reveal that defected CNT displays a gradual crossover from metal to insulator phase in a longitudinal electric field. By determining the threshold value of the electric field for metal–insulator transition, CNT may be used as a switch in electronic devices. Our results are obtained by calculating the singularity spectrum of a nearest-neighbor tight-binding model. Also, quantum chaos theory is used for obtaining a detailed understanding of a dynamic phase transition from delocalized states (chaotic) to localized states (Poisson). More interestingly, the appearance of negative differential resistance for pure CNT suggests potential applications in nanoelectronic devices.  相似文献   

12.
马玉龙  向伟  金大志  陈磊  姚泽恩  王琦龙 《物理学报》2016,65(9):97901-097901
在超高真空系统中对基于丝网印刷方法制备的碳纳米管薄膜的场蒸发效应进行实验研究. 实验发现, 碳纳米管薄膜样品存在场蒸发现象, 蒸发阈值场在10.0-12.6 V/nm之间, 蒸发离子流可以达到百皮安量级; 扫描电子显微镜分析和场致电子发射测量结果表明, 场蒸发会使碳纳米管分布变得更加不均匀, 会导致薄膜的场致电子发射开启电压上升(240→300V)、场增强因子下降(8300→4200)、蒸发阈值场上升(10→12.6V/nm), 同时使得薄膜场致电子发射的可重复性明显变好. 场蒸发也是薄膜自身电场一致性修复的表现, 这种修复并非表现在形貌上, 而是不同区域场增强因子之间的差距会越来越小, 这样薄膜场致电子发射的可重复性和稳定性自然会得到改善.  相似文献   

13.
沉积工艺参数对碳纳米管薄膜场发射性能的影响   总被引:7,自引:7,他引:0  
利用微波等离子体化学气相沉积(MWPCVD)方法,在不锈钢衬底上直接沉积碳纳米管膜。通过SEM、拉曼光谱和XRD表征,讨论了制备温度和甲烷浓度对碳纳米管膜场发射的影响。结果表明:不同条件下制备的碳纳米管膜的场发射性能有很大差异,保持氢气的流量(100sccm)、生长时间(10min)、反应室压力不变,当甲烷流量为8sccm、温度为700~800℃时,场发射性能最好,开启场强仅为0.8V/μm,发射点分布密集、均匀。  相似文献   

14.
《Current Applied Physics》2014,14(3):337-339
We have investigated the electric field effect on horseshoe-shape carbon nanotubes (CNTs) resulting from hydrogen adsorption on the single-wall armchair (n,n)CNTs with 6 ≤ n ≤ 16 by using the density functional theory calculations. The horseshoe-shape CNT is completely unzipped into a graphene nanoribbon upon applying a critical electric field, which decreases with increasing CNT diameter, thus enabling one to select a nanoribbon width. A simple model based on the tensile force exerted on the tube walls by the applied electric field was introduced to understand the CNT-diameter dependence of the critical field.  相似文献   

15.
We report on the results of experimental study of an array of vertically aligned carbon nanotubes (VA CNTs) by scanning tunnel microscopy (STM). It is shown that upon the application of an external electric field to the STM probe/VA CNT system, individual VA CNTs are combined into bundles whose diameter depends on the radius of the tip of the STM probe. The memristor effect in VA CNTs is detected. For the VA CNT array under investigation, the resistivity ratio in the low- and high-resistance states at a voltage of 180 mV is 28. The results can be used in the development of structures and technological processes for designing nanoelectronics devices based on VA CNT arrays, including elements of ultrahigh-access memory cells for vacuum microelectronics devices.  相似文献   

16.
We have conducted experimental and numerical studies on flame synthesis of carbon nanotubes (CNTs) to investigate the effects of three key parameters – selective catalyst, temperature and available carbon sources – on CNT growth. Two different substrates were used to synthesize CNTs: Ni-alloy wire substrates to obtain curved and entangled CNTs and Si-substrates with porous anodic aluminum oxide (AAO) nanotemplates to grow well-aligned, self-assembled and size-controllable CNTs, each using two different types of laminar flames, co-flow and counter-flow methane–air diffusion flames. An appropriate temperature range in the synthesis region is essential for CNTs to grow on the substrates. Possible carbon sources for CNT growth were found to be the major species CO and those intermediate species C2H2, C2H4, C2H6, and methyl radical CH3. The major species H2, CO2 and H2O in the synthesis region are expected to activate the catalyst and help to promote catalyst reaction.  相似文献   

17.
The purpose of this project is to investigate the characterization of carbon nanotube (CNT) thin-film transistors based on two solution-based fabrication methods: dielectrophoretic deposition of aligned CNTs and self-assembly of random-network CNTs. The electrical characteristics of aligned and random-network CNT transistors are studied comparatively. In particular, the selection effect of metallic and semiconducting CNTs in the dielectrophoresis process is evaluated experimentally by comparing the output characteristics of the two transistors. Our results demonstrate that the self-assembly method produces a stronger field effect with a much higher on/off ratio (I on /I off ). This phenomenon provides evidence that the metallic CNTs are more responsive to dielectrophoretic forces than their semiconducting counterparts under common deposition conditions. In addition, the nanotube–nanotube cross-junctions in random-network CNT films create additional energy barriers and result in a reduced electric current. Thus, additional consideration must be applied when using different fabrication methods in building CNT-based electronic devices.  相似文献   

18.
We report the influence of catalyst formulation and reaction temperature on the formation of carbon nanotube (CNT) thin films by the chemical vapour deposition (CVD) method. Thin films of CNTs were grown on Fe-Mo/Al2O3-coated silicon wafer by thermal decomposition of methane at different temperatures ranging from 800 to 1000°C. The electron microscopic investigations, SEM as well as HRTEM, of the as-grown CNT thin films revealed the growth of uniform multi-walled CNTs in abundance. The intensity ratio of D-band to G-band and FWHM of G-band through Raman measurements clearly indicated the dependency of structural defects and crystallinity of CNTs in thin films on the catalyst formulation and CVD growth temperature. The results suggest that thin films of multi-walled CNTs with negligible amount of defects in the nanotube structure and very high crystallinity can be obtained by thermal CVD process at 925°C.  相似文献   

19.
In this paper, we studied the effect of NaCl electrolyte as a surface treatment on improving the uniformity and stability of field emission of screen-printed carbon nanotubes (CNTs). A short period of the electrolyte treatment of CNT films remarkably increase emission uniformity and stability. Furthermore, the field emission characteristics of screen-printed carbon nanotubes (CNTs) such as low turn-on field, high emission current density and strong adhesion of the CNT film on the substrate were also reinforced after post-treated. SEM, TEM and Raman spectrum study revealed that uniformity and stability of field emission is enhanced by two factors. Firstly, the electrolyte treatment appeared to render the CNT surfaces more actively by exposing more CNTs form the CNT paste, which dominates initial uniformity and stability of field emission. Secondly, the number of opened CNTs and defects CNTs of CNT film were increased by electrical current energy.  相似文献   

20.
在传统的热化学气相沉积(CVD)的基础上,引入针尖电场,开展了电场对碳纳米管阵列准直性改善的研究。利用扫描电子显微镜(SEM)和Raman光谱两种表征手段,研究了加电场与不加电场两种情况下得到的碳纳米管(CNT)阵列的准直性,证明了电场对碳纳米管阵列准直生长的有效性。文章还对电场诱导碳纳米管阵列准直生长的机理进行了初步的探讨,认为电场使碳纳米管极化是CNT阵列准直生长的主要原因。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号