首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The oxygen permeation properties of mixed-conducting ceramics SrFeCo0.5O3−δ (SFCO), Ba0.5Sr0.5Co0.8Fe0.2O3−δ (BSCFO), La0.2Sr0.8Co0.8Fe0.2O3−δ (LSCFO) and Ba0.95Ca0.05Co0.8Fe0.2O3−δ (BCCFO) were studied by thermogravimetric method in the temperature range 600–900 °C. The results show that the oxygen adsorption rate constants ka of all material are larger than oxygen desorption rate constants kd and both ka and kd are not strongly dependent on temperature in the studied temperature range. The oxygen vacancy contents δ(N2) and δ(O2) in nitrogen and oxygen and their difference Δδ = δ(N2) − δ(O2) play an important role in determining the temperature behavior of oxygen permeation flux JO2.  相似文献   

2.
A configuration of dense mixed ionic and electronic conducting (MIEC) membrane with layered morphological structure for oxygen separation, which combines the benefits of high oxygen permeation flux of cobalt-based membrane, high chemical stability of iron-based perovskite and high mechanical strength of thick membrane, was studied. The membrane is normally composed of two layers; each layer is a dense MIEC oxide. The substrate layer is a thick dense membrane with high oxygen permeability but relatively lower chemical stability. The feasibility of dense thick Ba0.5Sr0.5Co0.8Fe0.2O3−δ (BSCF5582) membrane as the substrate layer and Ba0.5Sr0.5Co0.2Fe0.8O3−δ (BSCF5528) as the thin-film layer was mainly experimentally investigated. Both the BSCF5582 and the BSCF5528 show the same cubic perovskite structure and the similar lattice constant with no detrimental reaction products formed. By optimizing fabrication parameters of a simple dry pressing process, dual-layered membrane, free of cracks, was successfully fabricated. The oxygen permeation flux of a dual-layered membrane with the thin-film BSCF5528 layer facing to the sweep gas reached 2.1 mL cm−2 min−1 [STP] (1.56 × 10−6 mol cm−2 s−1) at 900 °C, which is about 3.5 times higher than that of the BSCF5528 membrane (0.6 mL cm−2 min−1, [STP] (4.46 × 10−7 mol cm−2 s−1) under the same conditions.  相似文献   

3.
A composite of oxygen ion conducting oxide Ce0.8Sm0.2O2−δ (60 vol.%) and electron conducting oxide La0.8Sr0.2CrO3−δ was prepared by sintering a powder compact at a temperature of 1550 °C. No significant reaction between the two constituent oxides was observed under preparation and oxygen permeation conditions. Appreciable oxygen permeation fluxes through the composite membrane were measured at elevated temperatures with one side of it exposed to the ambient air and the other side to a flowing helium gas stream. The oxygen flux initially increased with time, and took a long time to reach a steady value. A steady oxygen permeation flux as high as 1.4 × 10−7 mol cm−2 s−1 was obtained with a 0.3 mm thick membrane at 950 °C under a relatively small oxygen partial pressure difference of 0.21 bar/0.0092 bar. It was revealed that the overall oxygen permeation process was mainly limited by the transport in the bulk of the membrane in the range of the membrane thickness greater than 1.0 mm, and the limitation by the surface oxygen exchange came into play at reduced thickness of 0.6 mm.  相似文献   

4.
Since the discovery of superconductivity in Sr2CuO2F2+δ there has been an increased interest in ternary oxide-fluorides. Sr2CuO2F2+δ is prepared via low temperature (T = 220 °C) reaction routes. Low temperature fluorination induces an interesting structural rearrangement in the parent compound Sr2CuO3, which is a one-dimensional material containing linear chains of vertex sharing CuO4 squares along the crystallographic b axis. Upon fluorination, one oxide is substituted by two fluorides and Cu2+ becomes octahedrally coordinated by four oxides and two fluorides. The fluorinated compound Sr2CuO2F2+δ displays the T-type structure (La2CuO4). Insertion of excess fluorine, δ, also takes place and this fluorine occupies interstitial sites in the T structure. Although the starting material Ca2CuO3 is isostructural to Sr2CuO3, Ca2CuO2F2+δ displays the T′ (Nd2CuO4) structure due to the smaller radius of Ca2+ compared to that of Sr2+.

The alkaline-earth palladates with the general formula A2PdO3 (A = Ba, Sr) are isostructural with the A2CuO3(A = Ca, Sr) materials. We prepared the Ba2xSrxPdO3 (x = 0–2) series and performed low temperature fluorination, which led to the synthesis of the series Ba2xSrxPdO2F2+δ (0 ≤ x ≤ 1.5). All the compounds in the Ba2xSrxPdO2F2+δ series show T′ structure (Ca2CuO2F2+δ). Similarities and differences with Sr2CuO2F2+δ and Ca2CuO2F2+δ will be discussed.  相似文献   


5.
Dense tubular Ba0.5Sr0.5Co0.8Fe0.2O3−δ (BSCFO) membranes were successfully prepared by the plastic extrusion method. The oxygen permeation flux was determined at different oxygen partial pressures in the shell side and different temperatures between 700 and 900 °C. The oxygen vacancy diffusion coefficients (Dv) at different temperatures were calculated from the dependence of oxygen permeation flux on the oxygen partial pressure term based on the surface current exchange model. No unsteady-state of oxygen permeation flux was observed at the initial stage in our experiments. The reason is the equilibrium time is too short (less than 10 min) to observe the unsteady-state in time. The increase of the helium flow rate can increase the oxygen permeation flux, which is due to the decrease of the oxygen partial pressure in the tube side with increasing of the helium flow rate. The oxygen permeation flux can also be affected by the air flow rate in the shell side when the air flow rate is lower than 150 ml/min. But the oxygen permeation flux is insensitive to the air flow rate when the air flow is higher than 150 ml/min. The membrane tube was operated steadily for 150 h with oxygen permeation flux of 1.12 ml/(cm2 min) at 875 °C. X-ray diffraction (XRD) and energy dispersive spectroscopy (EDS) analysis showed that both the surface exposed to air and the surface exposed to helium of the BSCFO membrane tube after permeation for 150 h are similar to the fresh membrane tube in composition and structure. These results indicated that the membrane tube exhibits high structure stability.  相似文献   

6.
An overview on the variation of the thermal expansion, the electrical conductivity as well as non-stoichiometry of the oxide content as a function of composition within the quasi-ternary system La0.8Sr0.2MnO3−δ–La0.8Sr0.2CoO3−δ–La0.8Sr0.2FeO3−δ in air is presented. The various powders were synthesized under identical conditions. The DC electrical conductivity values of the compositions at 800 °C in air vary in a wide range from 15 to 1338 S cm−1. The magnitude of electrical conductivity of the perovskites is mainly determined by the percentage of cobalt in the compositions. A similar behaviour was observed for the measured thermal expansion coefficients between room temperature and 1000 °C in air, increasing from 10.9 to 19.4 × 10−6 K−1 as a function of cobalt content. Changes in the oxygen stoichiometry of the materials were characterized by temperature-programmed oxidation measurements.  相似文献   

7.
The CO2 absorption of several ABO3 type perovskites was studied by positron lifetime spectroscopy. The longer positron lifetime was associated with positrons trapped by A site vacancies. The evaluated positron lifetime data indicated the relative stability of the crystal structure of Sr(Co0.5Fe0.5)O3−δ against Ca doping at low Ca concentrations. Oxygen desorption and CO2 absorption/desorption could also be followed by positron lifetime spectroscopy. It was shown that the concentration of oxygen vacancies has a large effect on positron lifetime data through the electron density of A site vacancies.  相似文献   

8.
Effects of sintering atmospheres on properties of SrCo0.4Fe0.5Zr0.1O3−δ mixed-conducting membranes were in detail studied in terms of sintering behavior, electrical conductivity and oxygen permeability. The sintering atmospheres were 100% N2, 79% N2–21% O2, 60% N2–40% O2, 40% N2–60% O2, 20% N2–80% O2 and 100% O2 (in vol.%), and the prepared membranes were correspondingly denoted as S-0, S-21, S-40, S-60, S-80 and S-100, respectively. It was found that the properties of membranes were strongly dependent on the sintering atmosphere. As the oxygen partial pressure in the sintering atmosphere (PO2) increased, sintering ability, electrical conductivity and oxygen permeability decreased at first, which was in the order of S-0 > S-21 > S-40. However, as PO2 increased further, sintering ability, electrical conductivity and oxygen permeability increased gradually: S-40 < S-60 < S-80 < S-100. And the S-100 membrane had the best sintering ability, electrical conductivity and oxygen permeability in all membranes.  相似文献   

9.
We performed a study on the dielectric properties of BaxSr1−xTiO3–Mg0.9Zn0.1O (BST–MZO) composite ceramics derived from core–shell structured nanopowders with the shell of zinc doped MgO and core of BaxSr1−xTiO3. It was found that the ceramics exhibit a significant improvement in dielectric response under a DC electric field. The Curie temperature decreases more significantly in the BST–MZO composite ceramics compared to that of pure BST ceramics. The tunability of Ba0.75Sr0.25TiO3–40%MZO is 23.49% at 20 °C. The dielectric properties at high frequency also show low dielectric constant and great reduction in dielectric loss. These ceramics are expected to be useful in microwave devices.  相似文献   

10.
A series of CexPr1−xO2−δ mixed oxides were synthesized by a sol–gel method and characterized by Raman, XRD and TPR techniques. The oxidation activity for CO, CH3OH and CH4 on these mixed oxides was investigated. When the value x was changed from 1.0 to 0.8, only a cubic phase CeO2 was observed. The samples were greatly crystallized in the range of the value x from 0.99 to 0.80, which is due to the formation of solid solutions caused by the complete insertion of Pr into the CeO2 crystal lattices. Raman bands at 465 and 1150 cm−1 in CexPr1−xO2−δ samples are attributed to the Raman active F2g mode of CeO2. The broad band at around 570 cm−1 in the region of 0.3 ≤ x ≤ 0.99 can be linked to oxygen vacancies. The new band at 195 cm−1 may be ascribed to the asymmetric vibration caused by the formation of oxygen vacancies. The TPR profile of Pr6O11 shows two reduction peaks and the reduction process is followed: . The reduction temperature of CexPr1−xO2−δ mixed oxides is lower than those of Pr6O11 or CeO2. TPR results indicate that CexPr1−xO2−δ mixed oxides have higher redox properties because of the formation of CexPr1−xO2−δ solid solutions. The presence of the oxygen vacancies favors CO and CH3OH oxidation, while the activity of CH4 oxidation is mostly related to reduction temperatures and redox properties.  相似文献   

11.
A dense membrane of La0.6Sr0.4Co0.8Fe0.2O3−δ (LSCF) perovskite was prepared by a new chelating agent, ethylene diamine N,N,N′,N′-tetra N-acetyl diamine (EDTNAD). As a potent ligand, EDTNAD provided a facile one-step method to form complexes of the four metal ions, simultaneously. The oxygen permeation flux through the pure perovskite LSCF dense membrane was measured over temperature range of 1073–1223 K, thickness of 0.7–1.0 mm and oxygen partial pressure of 0.1–1.0 bar. Oxidative coupling of methane (OCM) reaction using LSCF disk in the atmospheric membrane reactor and over the temperature range of 1073–1173 K showed a C2 selectivity of 100% and C2 yield of 5.01% at 1153 K. Furthermore, OCM reaction data of the membrane reactor were discussed and compared with those of the fixed bed using the same perovskite powder as the catalyst.  相似文献   

12.
Dense ceramic mixed ionic and electronic conducting membranes have been deposited by atmospheric spray-pyrolysis technique onto porous ceramic substrates. Perovskite oxide layers, i.e. manganites La1−xSrxMnO3, ferrites La1−xSrxFe1−y(Co,Ni)yO3, gallates La1−xSrxGa1−y(Co,Ni,Fe)yO3, cobaltites La1−xSrxCoO3 and related perovskites such as lanthanum nickelate La2NiO4 layers have been prepared. The structure, morphology and composition of the layers were characterised by XRD, SEM and WDS, respectively. Density and gas tightness of the layers were studied as a function of deposition process parameters, film thickness (from 0.5 to 3 μm) and preparation procedure. The presence of cracks and defects due to thermo-mechanical stresses applied during or after the preparation process were correlated with the membrane composition and the corresponding thermal expansion coefficient differences between substrates and membranes.  相似文献   

13.
Ba1−xSrxTiO3 solid solutions were prepared by solid-state reaction from raw materials. Four compositions with x = 0.25, 0.50, 0.75 and 0.90 have been investigated. The perovskite type and polycrystalline structure of the BST samples were revealed by X-ray diffraction data. The morphology, grain size distribution, porous structure and elemental composition of the sintered ceramics were analyzed by using scanning electron microscopy (SEM) and energy-dispersive X-ray (EDX) microanalysis. The temperature dependence of permittivity and of dielectric loss tangent at low frequency (1 kHz) showed decrease of Curie temperature with increase of Sr content. Microwave measurements (1 GHz) showed substantial decrease of the dielectric constant from about 1600 to 200 and also of the losses from 12% to less than 2% with the Sr concentration increase from x = 0.25 to x = 0.90. Moreover, the addition of MgO and MnO2 1 wt.% each, improved sintering process and lowered the microwave losses up to 0.2%.  相似文献   

14.
The effect of grain size distribution in perovskite-type (Ba0.5Sr0.5)(Fe0.8Zn0.2)O3−δ (BSFZ) ceramics on their oxygen permeation behaviour has been investigated by variation of calcination temperature in powder production and sintering time for the ceramics. The membranes were examined via scanning electron microscopy (SEM), transmission electron microscopy (TEM) and oxygen permeation experiments. We found that the dwell time during sintering has an important influence on the microstructure of the ceramic. The longer the dwell time, the further proceeds the grain coarsening, which affects the oxygen permeation in a positive way and leads to an enhanced permeation. Supplementary, decreasing calcination temperature in perovskite powder synthesis delivers fine powders with grain sizes less than one micrometer and thus smaller grains in the ceramic. Unfortunately, the grain size distribution in sintered membranes is not constant through membrane cross-sections since grains in the bulk are smaller compared to those at the surface which is not favorable for the oxygen permeation of the ceramics. The activation energy was determined to be in the range of 51–53 kJ/mol and its variation does not exhibit a dependence of grain size changes. High-resolution transmission electron microscopy proved that grain boundaries are atomically thin without any interfacial phases. We come to the conclusion that the transport rate of the oxygen permeation is limited predominantly by bulk diffusion and due to the fact that grain boundaries in BSFZ act as barriers for bulk diffusion, this material is a high mobility material.  相似文献   

15.
The equilibrium structures and relative stabilities of BN-doped fullerenes C70−2x(BN)x (x=1–3) have been studied at the AM1 and MNDO level. The most stable isomers of C70−2x(BN)x have been found out and their electronic properties have been predicted. The calculation results show that the BN substituted fullerenes C70−2x(BN)x have considerable stabilities, though they are less stable than their all carbon analog. For C68BN, the isomers whose BN is located in the most chemically active bonds of C70 (namely B and A) are among the most stable species, of which B is predicted to be the ground state. The stabilities of C68BN decrease and the dipole moments increase with increasing the distance between the heteroatoms. For C66(BN)2, the lowest energy species is the isomer in which the B–N–B–N bond is formed; For C64(BN)3, the most stable species should have three BN units located in the same hexagon to form B–N–B–N–B–N ring. The ionization potentials and the affinity energies of the most stable species of BN-doped C70 are almost the same as those of C70 because of the isoelectronic relationship. The ionization potentials and affinity energies depend on the relative position of the heteroatoms in C68BN, the chemical reactivities of the isomers whose heteroatoms are well separated should differ significantly from their all carbon analog.  相似文献   

16.
The samples of La0.4Sr0.6Co1−yFeyO3−δ (y = 0.2 and 0.4) were prepared using both conventional ceramic technique and nitrate–citrate precursors technique. The phase identification was made by X-ray diffraction method. The refinement of structural parameters from the XRD and neutron diffraction measurements was performed by full profile Rietveld analysis. Neutron diffraction showed that both samples possess distorted perovskite-type structure. Oxygen nonstoichiometry was measured by chemical analysis and thermogravimetry (TG) analysis in the range 20 ≤ T/°C ≤ 900 and 2E-5 ≤ pO2/atm ≤ 4E-1. TG-experiments indicate a relatively fast and reversible oxygen exchange at pO2 > 1E-2 atm. Mass saturation occurs at T < 300 °C upon cooling. The absolute value of oxygen nonstoichiometry was determined by iodometric titration measurements. It was found that both samples have practically stoichiometric composition at 300 °C in air and δ increases with increasing temperature and decreasing oxygen partial pressure.  相似文献   

17.
A thin, gas-tight palladium (Pd) membrane was prepared by the counter-diffusion chemical vapor deposition (CVD) process employing palladium chloride (PdCl2) vapor and H2 as Pd precursors. A disk-shaped, two-layer porous ceramic membrane consisting of a fine-pore γ-Al2O3 top layer and a coarse-pore -Al2O3 substrate was used as Pd membrane support. A 0.5–1 μm thick metallic membrane was deposited in the γ-Al2O3 top layer very close to its surface, as verified by XRD and SEM with a backscattered electron detector. The most important parameters that affected the CVD process were reaction temperature, reactants concentrations and top layer quality. Deposition of Pd in the γ-Al2O3 top layer resulted in a 100- to 1000-fold reduction in He permeance of the porous substrate. The H2 permeation flux of these membranes was in the range 0.5–1.0 × 10−6 mol m−2 s−1 Pa−1 at 350–450°C. The H2 permeation data suggest that surface reaction steps are rate-limiting for H2 transport through such thin membranes in the temperature range studied.  相似文献   

18.
A series of modified ferrites were prepared by doping iron oxide with various transition/non-transition/inner-transition metal ions [M = Cr, Mn, Co, Ni, Cu, Zn and Ce] in situ during synthesis. All the modified ferrites thus obtained exhibit remarkably high surface areas, greater than that of pure iron oxide (Fe2O3) sample. The efficacy of the dopant ions in modifying the resultant specific surface area, could be directly related to variations in the rate of crystal growth. The nature and concentration of the foreign cations present in the system govern this variation. Interestingly all the modified ferrites, exhibit a narrow pore size distribution in the range of 4.9–25 nm. XRD analysis revealed the existence of hematite (Fe2O3) phase in all the as-prepared samples. The X-ray diffraction experiments performed on activated catalysts, confirmed the existence of magnetite (Fe3O4) phase with a nominal composition of Fe2.73M0.27O4. These inverse or mixed spinels with general formula A(1−δ)Bδ[AδB(2−δ)]O4, possess highly facile Fe3+  Fe2+ redox couple, the degree of facileness depends on the extent of synergistic interaction between iron and the other substitutent metal ion. The rapid electron hopping between Fe3+  Fe2+ in the Fe3O4 lattice system is essential to catalyze WGS reaction. From TPR it was observed that, incorporation of metal cations into the hematite (-Fe2O3) crystal structure alters the reducibility of the hematite particles, which in turn depends on the nature of the incorporated metal cation. A plausible explanation for the WGS activity over various modified ferrites has been attempted with the help of TPR analysis.  相似文献   

19.
In this article, the phase compositions, thermal, mechanical and transport properties of both the SrCo0.8Fe0.2O3−δ (SCF) and the SrCo0.8Fe0.1Sn0.1O3−δ (SSCF) ceramic membranes were investigated systematically. As compared with the SCF membrane, the SSCF one had a more promoted thermal shock resistance, which related to its small thermal expansion coefficient between them and an enhanced composite structure for it. For the SCF membrane, a permeation rate of 1.9 × 10−6 mol cm−2 s−1 was obtained at 1000 °C and under the oxygen partial pressure gradient of PO2 (h)/PO2 (l) = 0.209 atm/0.012 atm; however, the permeation rate was 2.5 × 10−6 mol cm−2 s−1 for the SSCF one in the same measuring condition. In addition, both peak values of total electrical conductivity (σe) for SSCF sample appeared with increasing temperature. The second peak value of σe for SSCF one was regarded as the contribution from its minor phase, which appeared with the mixed conducting behavior resulting from partly Co-dissolving into its lattice.  相似文献   

20.
A predominantly localized electron pair scheme is outlined for describing the electron distribution and bonding in closo borane anions BnHn2− and related electron deficient deltahedral clusters, in which a skeletal electron pair is assigned to each vertex, one pair being regarded as delocalized just inside the roughly spherical surface on which the skeletal atoms lie. The scheme gives a clearer picture of the electron distribution than is conveyed by resonating 2- and 3-centre bonds in the polyhedron edges and faces, and allows the bond orders of the polyhedron edge links to be calculated readily. The consequence of formal removal of BH2+ units from closo species BnHn2− to generate nido species Bn−1Hn−14− and arachno species Bn−2Hn−26− is explored, and seen to allow rationalization of two features of such deltahedral-fragment clusters: (i) why a high-connectivity vertex is left vacant and (ii) why the frontier orbitals of such species concentrate electronic charge around their open faces. Moreover, in the case of D4‘h B4H46− (cf. C4H42−) and D5h B5H56− (cf. C5H5), the approach leads directly to the familiar picture for aromatic ring systems in which the highest filled, doubly degenerate π-bonding molecular orbital concentrates electronic charge in rings above and below the polygon on which the skeletal nuclei lie. It also leads to the expectation that arachno clusters with non-adjacent vacant vertices will be more stable than those with adjacent vacant vertices.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号