首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A study on the enyne metathesis reaction leading to the formation cyclic compounds using ruthenium–indenylidene complexes is presented. Several 1,11‐dien‐6‐ynes have been subjected to ruthenium metathesis cyclization by using ruthenium–indenylidene complexes bearing various phosphine and N‐heterocyclic carbene (NHC) ligands. Interestingly, for some substrates chemodivergent metathesis occurs and is a function of the catalyst employed. This led us to investigate the competing “ene‐then‐yne” or “yne‐then‐ene” reaction pathways apparently at play in these systems using both experimental observations and DFT calculations. Experimental and computational studies were found in good agreement and permit to conclude that for phosphine‐containing catalysts, the “ene‐then‐yne” pathway is exclusively adopted. On the other hand, for catalysts bearing NHC ligands, both pathways are possible.  相似文献   

2.
Water has attracted significant attention as an alternative solvent for organometallic reactions because it is nontoxic, nonflammable, and inexpensive, and is easily separated from organic products. Organometallic reactions, like the palladium‐catalyzed couplings of organic halides with organoboron compounds (Suzuki) and organotin reagents (Stille), are among the most widely used reactions for the formation of carbon‐carbon bonds. Owing to the discovery of water‐soluble, sulfonated phosphane derivatives and particularly the design of water‐soluble palladium‐catalysts it was possible to import these reactions into aqueous media. Another efficient, metal‐catalyzed, carbon‐carbon bond‐forming process that is nowadays possible in aqueous media is the olefin metathesis. The approaches so far include the use of water‐soluble ruthenium‐catalysts, surfactants and additives, ultrasonication, the introduction of polar quaternary ammonium groups or the incorporation of PEG as a water solubilizing moiety. The last point bears also a great potential for further developments in the removal of ruthenium‐containing byproducts. Additionally, water is the ideal reaction environment for polar, water soluble substrates such as natural product or pharmaceuticals.  相似文献   

3.
The state‐of‐the‐art in olefin metathesis is application of N‐heterocyclic carbene (NHC)‐containing ruthenium alkylidenes for the formation of internal C=C bonds and of cyclic alkyl amino carbene (CAAC)‐containing ruthenium benzylidenes in the production of terminal olefins. A straightforward synthesis of bis(CAAC)Ru indenylidene complexes, which are highly effective in the formation of both terminal and internal C=C bonds at loadings as low as 1 ppm, is now reported.  相似文献   

4.
Use of a tandem ring‐opening–ring‐closing metathesis (RORCM) strategy for the synthesis of functional metathesis catalysts is reported. Ring opening of 7‐substituted norbornenes and subsequent ring‐closing metathesis forming a thermodynamically stable 6‐membered ring lead to a very efficient synthesis of new catalysts from commercially available Grubbs’ catalysts. Hydroxy functionalized Grubbs’ first‐ as well as third‐generation catalysts have been synthesized. Mechanistic studies have been performed to elucidate the order of attack of the olefinic bonds. This strategy was also used to synthesize the ruthenium methylidene complex.  相似文献   

5.
The development of selective olefin metathesis catalysts is crucial to achieving new synthetic pathways. Herein, we show that cis‐diiodo/sulfur‐chelated ruthenium benzylidenes do not react with strained cycloalkenes and internal olefins, but can effectively catalyze metathesis reactions of terminal dienes. Surprisingly, internal olefins may partake in olefin metathesis reactions once the ruthenium methylidene intermediate has been generated. This unexpected behavior allows the facile formation of strained cis‐cyclooctene by the RCM reaction of 1,9‐undecadiene. Moreover, cis‐1,4‐polybutadiene may be transformed into small cyclic molecules, including its smallest precursor, 1,5‐cyclooctadiene, by the use of this novel sequence. Norbornenes, including the reactive dicyclopentadiene (DCPD), remain unscathed even in the presence of terminal olefin substrates as they are too bulky to approach the diiodo ruthenium methylidene. The experimental results are accompanied by thorough DFT calculations.  相似文献   

6.
Ruthenium–catalyzed enyne metathesis is a reliable and efficient method for the formation of 1,3-dienes, a common structural motif in synthetic organic chemistry. The development of new transition-metal complexes competent to catalyze enyne metathesis reactions remains an important research area. This report describes the use of ruthenium (IV) dihydride complexes with the general structure RuH2Cl2(PR3)2 as new catalysts for enyne metathesis. These ruthenium (IV) dihydrides have been largely unexplored as catalysts in metathesis-based transformations. The reactivity of these complexes with 1,6 and 1,7-enynes was investigated. The observed reaction products are consistent with the metathesis activity occurring through a ruthenium vinylidene intermediate.  相似文献   

7.
The state‐of‐the‐art in olefin metathesis is application of N‐heterocyclic carbene (NHC)‐containing ruthenium alkylidenes for the formation of internal C=C bonds and of cyclic alkyl amino carbene (CAAC)‐containing ruthenium benzylidenes in the production of terminal olefins. A straightforward synthesis of bis(CAAC)Ru indenylidene complexes, which are highly effective in the formation of both terminal and internal C=C bonds at loadings as low as 1 ppm, is now reported.  相似文献   

8.
综述了近几年来以N-杂环卡宾为配体的金属络合物催化有机合成的反应。  相似文献   

9.
Two new ruthenium complexes bearing a bidentate (κ2O,C)‐isopropoxy–indenylidene ligand and a PPh3 ( 9 ) or PCy3 ( 10 , Cy=cyclohexyl) ligand have been synthesized and fully characterized by 1H and 13C NMR spectroscopy and X‐ray crystallography. Complex 10 displays a very high thermal stability with a half life of six days at 110 °C in [D8]toluene. Complex 10 was evaluated in various ring‐closing metathesis reactions and ring‐opening metathesis polymerization of dicyclopentadiene, in which it showed a latent behavior with low activity at room temperature and high activity upon thermal activation.  相似文献   

10.
The present study examines the influence of N-heterocyclic carbene (NHC) ligand electronic and steric parameters on the activity of ruthenium indenylidene complexes in cross metathesis. The NHC ligands tested lead to varied E/Z selectivities with the pre-catalyst bearing an IMes ligand exhibiting high activity.  相似文献   

11.
In a quest of redox‐switchable metathesis catalysts we attempted synthesis of ruthenium quinonylidene complexes using two synthetic pathways. First, Hoveyda‐type complexes bearing chelating benzylidene and naphthylidene ligands substituted with two alkoxy/hydroxy groups were synthesized and characterized. The catalysts were tested in model ring‐closing metathesis reactions, and displayed interesting correlations between structure and catalytic activity. Unfortunately, numerous attempts at oxidation of the complexes to derivatives of benzo‐ and naphthoquinone were unsuccessful. However, the second approach, using exchange reaction of ruthenium precursor with vinylquinone ligand, gave a transient unstable product observed with 1H NMR. The experimental data suggest that conjugation of electron‐deficient quinones to the ruthenium centre results in intrinsically unstable species, which undergo secondary reactions under ambient conditions. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

12.
Mechanism and activity of ruthenium olefin metathesis catalysts.   总被引:2,自引:0,他引:2  
This report details the effects of ligand variation on the mechanism and activity of ruthenium-based olefin metathesis catalysts. A series of ruthenium complexes of the general formula L(PR(3))(X)(2)Ru=CHR(1) have been prepared, and the influence of the substituents L, X, R, and R(1) on the rates of phosphine dissociation and initiation as well as overall activity for olefin metathesis reactions was examined. In all cases, initiation proceeds by dissociative substitution of a phosphine ligand (PR(3)) with an olefinic substrate. All of the ligands L, X, R, and R(1) have a significant impact on initiation rates and on catalyst activity. The origins of the observed substituent effects as well as the implications of these studies for the design and implementation of new olefin metathesis catalysts and substrates are discussed in detail.  相似文献   

13.
A series of ruthenium carbene catalysts containing 2‐sulfidophenolate bidentate ligand with an ortho‐substituent next to the oxygen atom were synthesized. The molecular structure of ruthenium carbene complex containing 2‐isopropyl‐6‐sulfidophenolate ligand was confirmed through single crystal X‐ray diffraction. An oxygen atom can be found in the opposite position of the N‐heterocyclic carbene (NHC) based on the steric hindrance and strong trans‐effects of the NHC ligand. The ruthenium carbene catalyst can catalyze ring‐opening metathesis polymerization (ROMP) reaction of norbornene with high activity and Z‐selectivity and cross metathesis (CM) reactions of terminal alkenes with (Z)‐but‐2‐ene‐1,4‐diol to give Z‐olefin products (Z/E ratios, 70:30–89:11) in low yields (13%–38%). When AlCl3 was added into the CM reactions, yields (51%–88%) were considerably improved and process becomes highly selective for E‐olefin products (E/Z ratios, 79:21–96:4). Similar to other ruthenium carbene catalysts, these new complexes can tolerate different functional groups.  相似文献   

14.
A study concerning the effect of using a fluorinated aromatic solvent as the medium for olefin metathesis reactions catalysed by ruthenium complexes bearing N-heterocyclic carbene ligands is presented. The use of fluorinated aromatic hydrocarbons (FAH) as solvents for olefin metathesis reactions catalysed by standard commercially available ruthenium pre-catalysts allows substantially higher yields of the desired products to be obtained, especially in the case of demanding polyfunctional molecules, including natural and biologically active compounds. Interactions between the FAH and the second-generation ruthenium catalysts, which apparently improve the efficiency of the olefin metathesis transformation, have been studied by X-ray structure analysis and computations, as well as by carrying out a number of metathesis experiments. The optimisation of reaction conditions by using an FAH can be regarded as a complementary approach for the design of new improved ruthenium catalysts. Fluorinated aromatic solvents are an attractive alternative medium for promoting challenging olefin metathesis reactions.  相似文献   

15.
The synthesis and characterization of two new ruthenium indenylidene complexes [RuCl(2)(SIPr)(Py)(Ind)] 6 and [RuCl(2)(SIPr)(3-BrPy)(Ind)] 7 featuring the sterically demanding N-heterocyclic carbene 1,3-bis(2,6-di isopropylphenyl)-4,5-dihydroimidazol-2-ylidene (SIPr) are reported. Remarkable activity was observed with these complexes in ring closing, enyne, and cross metathesis of olefins at low catalyst loadings. The performance of SIPr-bearing complexes 6 and 7 as well as [RuCl(2)(SIPr)(PCy(3))(Ind)] 5 in ring opening metathesis polymerization is also disclosed. This work highlights the enormous influence of the neutral "spectator" ligands on catalyst activity and stability.  相似文献   

16.
The synthesis of a ruthenium carbene complex based on a sulfonyl‐substituted methandiide and its application in bond activation reactions and cooperative catalysis is reported. In the complex, the metal–carbon interaction can be tuned between a Ru?C single bond with additional electrostatic interactions and a Ru?C double bond, thus allowing the control of the stability and reactivity of the complex. Hence, activation of polar and non‐polar bonds (O?H, H?H) as well as dehydrogenation reactions become possible. In these reactions the carbene acts as a non‐innocent ligand supporting the bond activation as nucleophilic center in the 1,2‐addition across the metal–carbon double bond. This metal–ligand cooperativity can be applied in the catalytic transfer hydrogenation for the reduction of ketones. This concept opens new ways for the application of carbene complexes in catalysis.  相似文献   

17.
Obtaining detailed structural information of reaction intermediates remains a key challenge in heterogeneous catalysis because of the amorphous nature of the support and/or the support interface that prohibits the use of diffraction‐based techniques. Combining isotopic labeling and dynamic nuclear polarization (DNP) increases the sensitivity of surface enhanced solid‐state NMR spectroscopy (SENS) towards surface species in heterogeneous alkene metathesis catalysts; this in turn allows direct determination of the bond connectivity and measurement of the carbon–carbon bond distance in metallacycles, which are the cycloaddition intermediates in the alkene metathesis catalytic cycle. Furthermore, this approach makes possible the understanding of the slow initiation and deactivation steps in these heterogeneous metathesis catalysts.  相似文献   

18.
Kinetic studies on ring-closing metathesis of unhindered and hindered substrates using phosphine and N-heterocyclic carbene (NHC)-containing ruthenium-indenylidene complexes (first and second generation precatalysts, respectively) have been carried out. These studies reveal an appealing difference, between the phosphine and NHC-containing catalysts, associated with a distinctive rate-determining step in the reaction mechanism. These catalysts have been compared with the benzylidene generation catalysts and their respective representative substrates. Finally, the reaction scope of the two most interesting precatalysts, complexes that contain tricyclohexylphosphine and 1,3-bis(2,4,6-trimethylphenyl)imidazol-2-ylidene (SIMes), has been investigated for the ring-closing and enyne metathesis for a large range of olefins. Owing to their high thermal stability, the SIMes-based indenylidene complexes were more efficient than their benzylidene analogues in the ring-closing metathesis of tetrasubstituted dienes. Importantly, none of the indenylidene precatalysts were found to be the most efficient for all of the substrates, indeed, a complementary complex-to-substrate activity relationship was observed.  相似文献   

19.
For many years, olefin metathesis has been a central topic of industrial and academic research because of its great synthetic utility. The employed initiators cover a wide range of compounds, from simple transition‐metal salts to highly sophisticated and well‐defined alkylidene complexes. Currently, ruthenium‐based catalysts are at the center of attention because of their remarkable tolerance toward oxygen, moisture, and numerous functionalities. This article focuses on recent developments in the field of ring‐opening metathesis polymerization using ruthenium‐based catalysts. ruthenium‐based initiators and their applications to the preparation of advanced polymeric materials are briefly reviewed. © 2002 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 40: 2895–2916, 2002  相似文献   

20.
关环复分解反应(RCM)及其催化剂研究进展   总被引:6,自引:0,他引:6  
朱杰  张学景  邹永 《有机化学》2004,24(2):127-139
综述了近年来关环复分解 (RCM )反应及其催化剂的研究进展 ,对RCM反应发展以来被广泛应用的催化剂 ,如Schrock催化剂和Grubbs催化剂等进行了归纳和总结 ,讨论了RCM反应在全合成中的应用  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号