首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 406 毫秒
1.
The state‐of‐the‐art in olefin metathesis is application of N‐heterocyclic carbene (NHC)‐containing ruthenium alkylidenes for the formation of internal C=C bonds and of cyclic alkyl amino carbene (CAAC)‐containing ruthenium benzylidenes in the production of terminal olefins. A straightforward synthesis of bis(CAAC)Ru indenylidene complexes, which are highly effective in the formation of both terminal and internal C=C bonds at loadings as low as 1 ppm, is now reported.  相似文献   

2.
Today's olefin metathesis catalysts show high reactivity, selectivity, and functional group tolerance, and allow the design of new syntheses of precisely functionalized polymers. Here we describe a general “one‐pot” synthesis for narrow polydispersity bis‐end‐functional (=homotelechelic) ROMP polymers exploiting the propagating ruthenium complex inherent selectivity for strained norbornenes over acyclic internal olefins. This approach represents a straightforward general method of homotelechelic polymers carrying almost any functional end group (within the limitations of the catalyst's functionality tolerance). Complete pre‐functionalization of the initiator is realized in situ within minutes and without the need of further purification steps. The excess acyclic olefin re‐enters the catalytic cycle after monomer consumption is complete giving a homotelechelic polymer. 1H NMR spectroscopic and MALDI‐ToF‐MS analysis show highly efficient end group functionalization. © 2013 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2013 , 51, 4183–4190  相似文献   

3.
Ethylene is the byproduct of olefin metathesis reactions that involve one or more terminal alkenes. Its volatility is one reason why many cross-metathesis or ring-closing metathesis processes, which are reversible transformations, are efficient. However, because ethylene can be converted to a methylidene complex, which is a highly reactive but relatively unstable species, its concentration can impact olefin metathesis in other ways. In some cases, introducing excess ethylene can increase reaction rate owing to faster catalyst initiation. Ethylene and a derived methylidene complex can also advantageously inhibit substrate or product homocoupling, and/or divert a less selective pathway. In other instances, a methylidene's low stability and high activity may lead to erosion of efficiency and/or kinetic selectivity, making it preferable that ethylene is removed while being generated. If methylidene decomposition is so fast that there is little or no product formation, it is best that ethylene and methylidene complex formation is avoided altogether. This is accomplished by the use of di- or trisubstituted alkenes in stereoretentive processes, which includes adopting methylene capping strategy. Here, we analyze the different scenarios through which ethylene and the involvement of methylidene complexes can be manipulated and managed so that an olefin metathesis reaction may occur more efficiently and/or more stereoselectively.  相似文献   

4.
The electrochemical reduction of WCl6 results in the formation of an active olefin (alkene) metathesis catalyst. The application of the WCl6–e?–Al–CH2Cl2 catalyst system to cross‐metathesis reactions of non‐functionalized acyclic olefins is reported. Undesirable reactions, such as double‐bond shift isomerization and subsequent metathesis, were not observed in these reactions. Cross‐metathesis of 7‐tetradecene with an equimolar amount of 4‐octene generated the desired cross‐product, 4‐undecene, in good yield. The reaction of 7‐tetradecene with 2‐octene, catalyzed by electrochemically reduced tungsten hexachloride, resulted in both self‐ and cross‐metathesis products. The cross‐metathesis products, 2‐nonene and 6‐tridecene, were formed in larger amounts than the self‐metathesis products of 2‐octene. The optimum catalyst/olefin ratio and reaction time were found to be 1 : 60 and 24 h, respectively. The cross‐metathesis of symmetrical olefins with α‐olefins was also studied under the predetermined conditions. Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   

5.
A series of ruthenium carbene catalysts containing 2‐sulfidophenolate bidentate ligand with an ortho‐substituent next to the oxygen atom were synthesized. The molecular structure of ruthenium carbene complex containing 2‐isopropyl‐6‐sulfidophenolate ligand was confirmed through single crystal X‐ray diffraction. An oxygen atom can be found in the opposite position of the N‐heterocyclic carbene (NHC) based on the steric hindrance and strong trans‐effects of the NHC ligand. The ruthenium carbene catalyst can catalyze ring‐opening metathesis polymerization (ROMP) reaction of norbornene with high activity and Z‐selectivity and cross metathesis (CM) reactions of terminal alkenes with (Z)‐but‐2‐ene‐1,4‐diol to give Z‐olefin products (Z/E ratios, 70:30–89:11) in low yields (13%–38%). When AlCl3 was added into the CM reactions, yields (51%–88%) were considerably improved and process becomes highly selective for E‐olefin products (E/Z ratios, 79:21–96:4). Similar to other ruthenium carbene catalysts, these new complexes can tolerate different functional groups.  相似文献   

6.
Combining Surface Organometallic Chemistry with rigorous olefin purification protocol allows evaluating and comparing the intrinsic activities of Mo and W olefin metathesis catalysts towards different types of olefin substrates. While well‐defined silica‐supported Mo and W imido‐alkylidenes show very similar activities in metathesis of internal olefins, Mo catalysts systematically outperform their W analogs in metathesis of terminal olefins, consistent with the formation of stable unsubstituted W metallacyclobutanes in the presence of ethylene. However, Mo catalysts are more prone to induce olefin isomerization, in particular when ethylene is present, probably because of their propensity to undergo more easily reduction processes.  相似文献   

7.
A ruthenium carbene complex containing a Zn‐porphyrin ligand has been developed. The complex was characterized by 1H NMR, IR, HRMS and elemental analysis. The catalytic activity of the ruthenium carbene complex for olefin metathesis reactions was also investigated. The complex exhibited excellent performance for both ring‐closing and cross metathesis reactions at 35°C.  相似文献   

8.
Imidazolium salts (NHCewg ? HCl) with electronically variable substituents in the 4,5‐position (H,H or Cl,Cl or H,NO2 or CN,CN) and sterically variable substituents in the 1,3‐position (Me,Me or Et,Et or iPr,iPr or Me,iPr) were synthesized and converted into the respective [AgI(NHC)ewg] complexes. The reactions of [(NHC)RuCl2(CHPh)(py)2] with the [AgI(NHCewg)] complexes provide the respective [(NHC)(NHCewg)RuCl2(CHPh)] complexes in excellent yields. The catalytic activity of such complexes in ring‐closing metathesis (RCM) reactions leading to tetrasubstituted olefins was studied. To obtain quantitative substrate conversion, catalyst loadings of 0.2–0.5 mol % at 80 °C in toluene are sufficient. The complex with the best catalytic activity in such RCM reactions and the fastest initiation rate has an NHCewg group with 1,3‐Me,iPr and 4,5‐Cl,Cl substituents and can be synthesized in 95 % isolated yield from the ruthenium precursor. To learn which one of the two NHC ligands acts as the leaving group in olefin metathesis reactions two complexes, [(FL‐NHC)(NHCewg)RuCl2(CHPh)] and [(FL‐NHCewg)(NHC)RuCl2(CHPh)], with a dansyl fluorophore (FL)‐tagged electron‐rich NHC ligand (FL‐NHC) and an electron‐deficient NHC ligand (FL‐NHCewg) were prepared. The fluorescence of the dansyl fluorophore is quenched as long as it is in close vicinity to ruthenium, but increases strongly upon dissociation of the respective fluorophore‐tagged ligand. In this manner, it was shown for ring‐opening metathesis ploymerization (ROMP) reactions at room temperature that the NHCewg ligand normally acts as the leaving group, whereas the other NHC ligand remains ligated to ruthenium.  相似文献   

9.
Olefin metathesis is a transition metal‐mediated transformation that rearranges the carbon atoms of the carbon–carbon double bond of olefins. This reaction has become one of the most important and powerful reactions. Therefore development of new, well‐defined, highly active and selective catalysts is very desirable and a valuable goal. This mini‐review mainly introduces the development of ruthenium catalysts in olefin metathesis highlighting oxygen‐chelated indenylidene ruthenium catalysts. Applying an alkoxyl group on the indenylidene ligand fragment can generate the Ru ? O chelating bond. Additionally, various modifications of the ligand as well as the catalytic activity for ring‐closing metathesis reaction and selectivity of cross metathesis reaction are overviewed. Finally, the perspectives on the development of new catalysts are summarized. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

10.
The state‐of‐the‐art in olefin metathesis is application of N‐heterocyclic carbene (NHC)‐containing ruthenium alkylidenes for the formation of internal C=C bonds and of cyclic alkyl amino carbene (CAAC)‐containing ruthenium benzylidenes in the production of terminal olefins. A straightforward synthesis of bis(CAAC)Ru indenylidene complexes, which are highly effective in the formation of both terminal and internal C=C bonds at loadings as low as 1 ppm, is now reported.  相似文献   

11.
Recent results for synthesis of end-functionalized polymers (EFP) by using olefin metathesis polymerization have been introduced including basic characteristics in ring-opening metathesis polymerization (ROMP) of cyclic olefins and acyclic diene metathesis (ADMET) polymerization for synthesis of conjugated polymers. Several approaches were demonstrated for synthesis of EFP by living ROMP using molybdenum (exclusive coupling with aldehyde) and ruthenium catalysts (sacrificial ROMP, chain transfer). Cis specific (Z selective) ROMPs were achieved by molybdenum, ruthenium, and vanadium catalysts by the ligand modification. The catalytic synthesis of EFP with high cis selectivity has been achieved by combined ROMP with chain transfer by V(CHSiMe3)(N-2,6-Cl2C6H3)[OC(CF3)3](PMe3)2. The ADMET polymerization using molybdenum and ruthenium catalysts afforded defect-free, high molecular weight poly(arylene vinylene)s containing all trans olefinic double bonds. The methods for precise synthesis of EFPs, exhibiting unique optical properties combined with the end groups, were developed. The catalytic one-pot syntheses for EFPs have also been developed.  相似文献   

12.
Olefin cross metathesis is a particularly powerful transformation that has been exploited extensively for the formation of complex products. Until recently, however, constructing Z‐olefins using this methodology was not possible. With the discovery and development of three families of ruthenium‐based Z‐selective catalysts, the formation of Z‐olefins using metathesis is now not only possible but becoming increasingly prevalent in the literature. In particular, ruthenium complexes containing cyclometalated NHC architectures developed in our group have been shown to catalyze various cross metathesis reactions with high activity and, in most cases, near perfect selectivity for the Z‐isomer. The types of cross metathesis reactions investigated thus far are presented here and explored in depth.  相似文献   

13.
Molybdenum‐, tungsten‐, and ruthenium‐based complexes that control the stereochemical outcome of olefin metathesis reactions have been recently introduced. However, the complementary nature of these systems through their combined use in multistep complex molecule synthesis has not been illustrated. A concise diastereo‐ and enantioselective route that furnishes the anti‐proliferative natural product neopeltolide is now disclosed. Catalytic transformations are employed to address every stereochemical issue. Among the featured processes are an enantioselective ring‐opening/cross‐metathesis promoted by a Mo monoaryloxide pyrrolide (MAP) complex and a macrocyclic ring‐closing metathesis that affords a trisubstituted alkene and is catalyzed by a Mo bis(aryloxide) species. Furthermore, Z‐selective cross‐metathesis reactions, facilitated by Mo and Ru complexes, have been employed in the stereoselective synthesis of the acyclic dienyl moiety of the target molecule.  相似文献   

14.
An expanded family of ruthenium‐based metathesis catalysts bearing cyclic alkyl amino carbene (CAAC) ligands was prepared. These catalysts exhibited exceptional activity in the ethenolysis of the seed‐oil derivative methyl oleate. In many cases, catalyst turnover numbers (TONs) of more than 100 000 were achieved, at a catalyst loading of only 3 ppm. Remarkably, the most active catalyst system was able to achieve a TON of 340 000, at a catalyst loading of only 1 ppm. This is the first time a series of metathesis catalysts has exhibited such high performance in cross‐metathesis reactions employing ethylene gas, with activities sufficient to render ethenolysis applicable to the industrial‐scale production of linear α‐olefins (LAOs) and other terminal‐olefin products.  相似文献   

15.
Thirteen‐ to eighteen‐membered lactones were synthesized by ring‐closing olefin‐metathesis reactions of bis‐olefins with heterogeneous Grubbs‐supported ionic‐liquid catalysts (SILCs), in which homogeneous Grubbs catalysts were confined in pores of alumina with the aid of an ionic liquid. The Grubbs‐SILCs exhibited higher catalytic performance than their homogeneous counterparts and could be repeatedly recovered by simple filtration and re‐used several times.  相似文献   

16.
Remarkable innovations have been made in the field of olefin metathesis due to the design and preparation of new catalysts. Ethenolysis, which is cross‐metathesis with ethylene, represents one catalytic transformation that has been used with the purpose of cleaving internal carbon–carbon double bonds. The objectives were either the ring opening of cyclic olefins to produce dienes or the shortening of unsaturated hydrocarbon chains to degrade polymers or generate valuable shorter terminal olefins in a controlled manner. This Review summarizes several aspects of this reaction: the catalysts, their degradation in the presence of ethylene, some parameters driving their productivity, the side reactions, and the applications of ethenolysis in organic synthesis and in potential industrial applications.  相似文献   

17.
Molybdenum imido adamantylidene complexes with different substituents on the imido ligand (dipp=2,6-diisopropylphenyl, ArF5=C6F5, and tBu) having distinct electron donating abilities were investigated for the metathesis of internal and terminal olefins, for both molecular and silica-supported species using standardized protocols. Here we show that surface immobilization of these compounds results in dramatically increased activity compared to their molecular counterparts. Additionally, we show that electron withdrawing imido groups increase the activity of the compound towards terminal olefins while they simultaneously decrease the ability to metathesize internal olefins. Furthermore, these systems also show high stability when used as initiators in olefin metathesis, although the species that display higher initial activity deactivate faster than those that show more a more moderate reaction rate at first. Our catalytic studies, augmented by DFT calculations, show that all investigated compounds have a remarkably small energy difference between the trigonal bipyramidal (TBP) and square planar (SP) configurations of the metallacyclobutane intermediates, which has previously been linked to high activity.  相似文献   

18.
Robust, selective, and stable in the presence of ethylene, ruthenium olefin metathesis pre-catalyst, {[3-benzyl-1-(10-phenyl-9-phenanthryl)]-2-imidazolidinylidene}dichloro(o-isopropoxyphenylmethylene)ruthenium(II), Ru-3 , bearing an unsymetrical N-heterocyclic carbene (uNHC) ligand, has been synthesized. The initiation rate of Ru-3 was examined by ring-closing metathesis and cross-metathesis reactions with a broad spectrum of olefins, showing an unprecendented selectivity. It was also tested in industrially relevant ethenolysis reactions of olefinic substrates from renewable feedstock with very good yields and selectivities.  相似文献   

19.
A study concerning the effect of using a fluorinated aromatic solvent as the medium for olefin metathesis reactions catalysed by ruthenium complexes bearing N-heterocyclic carbene ligands is presented. The use of fluorinated aromatic hydrocarbons (FAH) as solvents for olefin metathesis reactions catalysed by standard commercially available ruthenium pre-catalysts allows substantially higher yields of the desired products to be obtained, especially in the case of demanding polyfunctional molecules, including natural and biologically active compounds. Interactions between the FAH and the second-generation ruthenium catalysts, which apparently improve the efficiency of the olefin metathesis transformation, have been studied by X-ray structure analysis and computations, as well as by carrying out a number of metathesis experiments. The optimisation of reaction conditions by using an FAH can be regarded as a complementary approach for the design of new improved ruthenium catalysts. Fluorinated aromatic solvents are an attractive alternative medium for promoting challenging olefin metathesis reactions.  相似文献   

20.
Ruthenium- and rhodium-based catalysts can be designed and finely tuned to some extent so as to mediate either carbene transfer to olefins (e.g., olefin cyclopropanation) or olefin metathesis. The different outcome of the reactions can be quite simply predicted based on either the ability or the absence of ability of the metal center to coordinate both the carbene and the olefin. Several available coordination sites at the metal center are favorable for metathesis to the prejudice of olefin cyclopropanation. Based on the report presented at the conference “Organometallic Chemistry on the Eve of the 21st Century,” May 19–23, 1998, Moscow. Translated fromIzvestiya Akademii Nauk, Seriya Khimicheskaya, No. 7, pp. 1219–1224, July, 1999.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号