首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 562 毫秒
1.
We consider a model for the interaction of a gas with photons. In the article (Lin et al. Phys D 218:83–94, 2006), smooth traveling wave solutions called shock profiles have been constructed under a suitable smallness assumption between the asymptotic states. In this work, we construct piecewise smooth traveling wave solutions that connect two asymptotic states with a large jump. In particular, we give a rigorous mathematical justification to the formation of the so-called Zeldovich spike.  相似文献   

2.
In this paper, we develop a general approach to deal with the asymptotic behavior of traveling wave solutions in a class of three-component lattice dynamical systems. Then we demonstrate an application of these results to construct entire solutions which behave as two traveling wave fronts moving towards each other from both sides of x-axis for a three-species competition system with Lotka–Volterra type nonlinearity in a lattice.  相似文献   

3.
This paper is concerned with the stability of traveling wave fronts for delayed monostable lattice differential equations. We first investigate the existence non-existence and uniqueness of traveling wave fronts by using the technique of monotone iteration method and Ikehara theorem. Then we apply the contraction principle to obtain the existence, uniqueness, and positivity of solutions for the Cauchy problem. Next, we study the stability of a traveling wave front by using comparison theorems for the Cauchy problem and initial-boundary value problem of the lattice differential equations, respectively. We show that any solution of the Cauchy problem converges exponentially to a traveling wave front provided that the initial function is a perturbation of the traveling wave front, whose asymptotic behaviour at \(-\infty \) satisfying some restrictions. Our results can apply to many lattice differential equations, for examples, the delayed cellular neural networks model and discrete diffusive Nicholson’s blowflies equation.  相似文献   

4.
This paper is concerned with the traveling wave solutions of delayed reaction–diffusion systems. By using Schauder’s fixed point theorem, the existence of traveling wave solutions is reduced to the existence of generalized upper and lower solutions. Using the technique of contracting rectangles, the asymptotic behavior of traveling wave solutions for delayed diffusive systems is obtained. To illustrate our main results, the existence, nonexistence and asymptotic behavior of positive traveling wave solutions of diffusive Lotka–Volterra competition systems with distributed delays are established. The existence of nonmonotone traveling wave solutions of diffusive Lotka–Volterra competition systems is also discussed. In particular, it is proved that if there exists instantaneous self-limitation effect, then the large delays appearing in the intra-specific competitive terms may not affect the existence and asymptotic behavior of traveling wave solutions.  相似文献   

5.
6.
We prove the existence of multidimensional traveling wave solutions of the bistable reaction-diffusion equation with periodic coefficients under the condition that these coefficients are close to constants. In the case of one space dimension, we prove their asymptotic stability.  相似文献   

7.
We use a shooting method to show the existence of traveling wave fronts and to obtain an explicit expression of minimum wave speed for a class of diffusive predator?Cprey systems. The existence of traveling wave fronts indicates the existence of a transition zone from a boundary equilibrium to a co-existence steady state and the minimum wave speed measures the asymptotic speed of population spread in some sense. Our approach is a significant improvement of techniques introduced by Dunbar. The advantage of our method is that it does not need the notion of Wazewski??s set and LaSalle??s invariance principle used in Dunbar??s approach. In our approach, we convert the equations for traveling wave solutions to a system of first order equations by a ??non-traditional transformation??. With this converted new system, we are able to construct a Liapunov function, which gives an immediate implication of the boundedness and convergence of the relevant class of heteroclinic orbits. Our method provides a more efficient way to study the existence of traveling wave solutions for general predator?Cprey systems.  相似文献   

8.
It is a well-known problem to derive nonlinear stability of a traveling wave from the spectral stability of a linearization. In this paper we prove such a result for a large class of hyperbolic systems. To cope with the unknown asymptotic phase, the problem is reformulated as a partial differential algebraic equation for which asymptotic stability becomes usual Lyapunov stability. The stability proof is then based on linear estimates from (Rottmann-Matthes, J Dyn Diff Equat 23:365–393, 2011) and a careful analysis of the nonlinear terms. Moreover, we show that the freezing method (Beyn and Thümmler, SIAM J Appl Dyn Syst 3:85–116, 2004; Rowley et al. Nonlinearity 16:1257–1275, 2003) is well-suited for the long time simulation and numerical approximation of the asymptotic behavior. The theory is illustrated by numerical examples, including a hyperbolic version of the Hodgkin–Huxley equations.  相似文献   

9.
This paper is concerned with the existence, uniqueness, and global stability of traveling waves in discrete periodic media for a system of ordinary differential equations exhibiting bistable dynamics. The main tools used to prove the uniqueness and asymptotic stability of traveling waves are the comparison principle, spectrum analysis, and constructions of super/subsolutions. To prove the existence of traveling waves, the system is converted to an integral equation which is common in the study of monostable dynamics but quite rare in the study of bistable dynamics. The main purpose of this paper is to introduce a general framework for the study of traveling waves in discrete periodic media.  相似文献   

10.
A new, geometric proof of a theorem of Fife, Palusinski, and Su on electrophoretic traveling waves is presented. The proof is based upon the perturbation theory for invariant manifolds due to Fenichel. The results proved here reproduce the existence, uniqueness, and asymptotic approximation theorem proved by Fifeet al. The proof given here is substantially simpler, and in addition, it provides additional insight into the geometric structure of the phase space of the traveling wave equations for this system.  相似文献   

11.
The asymptotic speed of spread is established for a diffusive and time-delayed integro-differential equation modeling vector disease, and its coincidence with the minimal wave speed for monotone traveling waves is proved. An erratum to this article can be found at  相似文献   

12.
We study a Lotka–Volterra type weak competition model with a free boundary in a one-dimensional habitat. The main objective is to understand the asymptotic behavior of two competing species spreading via a free boundary. We also provide some sufficient conditions for spreading success and spreading failure, respectively. Finally, when spreading successfully, we provide an estimate to show that the spreading speed (if exists) cannot be faster than the minimal speed of traveling wavefront solutions for the competition model on the whole real line without a free boundary.  相似文献   

13.
This paper is concerned with front-like entire solutions for monostable reaction-diffusion systems with cooperative and non-cooperative nonlinearities. In the cooperative case, the existence and asymptotic behavior of spatially independent solutions (SIS) are first proved. Further, combining a SIS and traveling fronts with different wave speeds and propagation directions, the existence and various qualitative properties of entire solutions are established by using the comparison principle. In the non-cooperative case, we introduce two auxiliary cooperative systems and establish a comparison theorem for the Cauchy problems of the three systems, and then prove the existence of entire solutions via using the comparison theorem, the traveling fronts and SIS of the auxiliary systems. Our results are applied to some biological and epidemiological models. To the best of our knowledge, it is the first work to study the entire solutions of non-cooperative reaction-diffusion systems.  相似文献   

14.
This paper deals with entire solutions of a nonlocal dispersal epidemic model. Unlike local (random) dispersal problems, a nonlocal dispersal operator is not compact and the solutions of nonlocal dispersal system studied here lack regularity in suitable spaces, which affects the uniform convergence of the solution sequences and the technique details in constructing the entire solutions. In the monostable case, some new types of entire solutions are constructed by combining leftward and rightward traveling fronts with different speeds and a spatially independent solution. In the bistable case, the existence of many different entire solutions with merging fronts are proved by constructing different sub- and super-solutions. Various qualitative features of the entire solutions are also investigated. A key idea is to characterize the asymptotic behaviors of the traveling wave solutions at infinite in terms of appropriate sub- and super-solutions. Finally, we also obtain the smoothness of the entire solutions in space, i.e., the solutions established in our paper are global Lipschitz continuous in space.  相似文献   

15.
We study a free boundary problem associated with the curvature dependent motion of planar curves in the upper half plane whose two endpoints slide along the horizontal axis with prescribed fixed contact angles. Our first main result concerns the classification of solutions; every solution falls into one of the three categories, namely, area expanding, area bounded and area shrinking types. We then study in detail the asymptotic behavior of solutions in each category. Among other things we show that solutions are asymptotically self-similar both in the area expanding and the area shrinking cases, while solutions converge to either a stationary solution or a traveling wave in the area bounded case. We also prove results on the concavity properties of solutions. One of the main tools of this paper is the intersection number principle, however in order to deal with solutions with free boundaries, we introduce what we call “the extended intersection number principle”, which turns out to be exceedingly useful in handling curves with moving endpoints.  相似文献   

16.
The current paper is devoted to the study of spatial spreading dynamics of a class of nonlocal diffusion equation. It is known that there exists a critical speed \(c^{*}>0\) such that this nonlocal diffusion equation has a unique regular traveling wave solution if and only if \(c>c^{*}\). In this paper we show that this \(c^{*}\) is the asymptotic speed of propagation.  相似文献   

17.
This paper is concerned with time periodic traveling curved fronts for periodic Lotka–Volterra competition system with diffusion in two dimensional spatial space
$$\begin{aligned} {\left\{ \begin{array}{ll} \dfrac{\partial u_{1}}{\partial t}=\Delta u_{1} +u_{1}(x,y,t)\left( r_{1}(t)-a_{1}(t)u_{1}(x,y,t)-b_{1}(t)u_{2}(x,y,t)\right) ,\\ \dfrac{\partial u_{2}}{\partial t}=d\Delta u_{2} +u_{2}(x,y,t)\left( r_{2}(t)-a_{2}(t)u_{1}(x,y,t)-b_{2}(t)u_{2}(x,y,t)\right) , \end{array}\right. } \end{aligned}$$
where \(\Delta \) denotes \(\frac{\partial ^{2}}{\partial x^{2} }+ \frac{\partial ^{2}}{\partial y^{2} }\), \(x,y\in {\mathbb {R}}\) and \(d>0\) is a constant, the functions \(r_i(t),a_i(t)\) and \(b_i(t)\) are T-periodic and Hölder continuous. Under suitable assumptions that the corresponding kinetic system admits two stable periodic solutions (p(t), 0) and (0, q(t)), the existence, uniqueness and stability of one-dimensional traveling wave solution \(\left( \Phi _{1}(x+ct,t),\Phi _{2}(x+ct,t)\right) \) connecting two periodic solutions (p(t), 0) and (0, q(t)) have been established by Bao and Wang ( J Differ Equ 255:2402–2435, 2013) recently. In this paper we continue to investigate two-dimensional traveling wave solutions of the above system under the same assumptions. First, we establish the asymptotic behaviors of one-dimensional traveling wave solutions of the system at infinity. Using these asymptotic behaviors, we then construct appropriate super- and subsolutions and prove the existence and non-existence of two-dimensional time periodic traveling curved fronts. Finally, we show that the time periodic traveling curved front is asymptotically stable.
  相似文献   

18.
The nonlinear interaction of periodic traveling waves of the first and second harmonics in a constant-depth uniform fluid covered with broken ice is considered. Uniform asymptotic expansions up to third-order values for the velocity potential of the fluid and the elevation of the basin surface are found by means of the multivariable expansion procedure. The dependence of the wave perturbations on the thickness of the ice and the interacting-harmonic characteristics is analyzed. Sevastopol. Translated from Izvestiya Rossiiskoi Akademii Nauk, Mekhanika Zhidkosti i Gaza, No. 4, pp. 136–143, July–August, 1994.  相似文献   

19.
We study a model for the lateral propagation of a combustion front through a porous medium with two parallel layers having different properties. The reaction involves oxygen and a solid fuel. In each layer, the model consists of a nonlinear reaction–diffusion–convection system, derived from balance equations and Darcy’s law. Under an incompressibility assumption, we obtain a simple model whose variables are temperature and unburned fuel concentration in each layer. The model includes heat transfer between the layers. We find a family of traveling wave solutions, depending on the heat transfer coefficient and other system parameters, that connect a burned state behind the combustion front to an unburned state ahead of it. These traveling waves are strong: they correspond to connecting orbits of a system of five ordinary differential equations that lie in the unstable manifold of a hyperbolic saddle and the stable manifold of a nonhyperbolic equilibrium. We argue that for physically relevant initial conditions, traveling waves that correspond to connecting orbits that approach the nonhyperbolic equilibrium along its center direction do not occur. When the heat transfer coefficient is small, we prove that strong traveling waves exist for a small range of system parameters, near parameter values where the two layers individually admit strong traveling waves with the same speed. When the heat transfer coefficient is large, we prove that strong traveling waves exist for a very large range of parameters. For small heat transfer, combustion typically does not occur simultaneously in the two layers; for large heat transfer, it does. The proofs use geometric singular perturbation theory. We give a numerical method to solve the nonlinear problem, and we present numerical simulations that indicate that the traveling waves we have found are in fact the dominant feature of solutions.  相似文献   

20.
For a system of reaction–diffusion equations that models the interaction of n mutualist species, the existence of the bistable traveling wave solution has been proved where the nonlinear reaction terms possess a certain type of monotonicity. However the problem of whether there can be two distinct traveling waves remains open. In this paper we use a homotopy approach incorporated with the Liapunov–Schmidt method to show that the bistable traveling wave solution is unique. Our method developed in this paper can also be applied to study the existence and uniqueness of traveling wave solutions for some competition models.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号