首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
It is a well-known problem to derive nonlinear stability of a traveling wave from the spectral stability of a linearization. In this paper we prove such a result for a large class of hyperbolic systems. To cope with the unknown asymptotic phase, the problem is reformulated as a partial differential algebraic equation for which asymptotic stability becomes usual Lyapunov stability. The stability proof is then based on linear estimates from (Rottmann-Matthes, J Dyn Diff Equat 23:365–393, 2011) and a careful analysis of the nonlinear terms. Moreover, we show that the freezing method (Beyn and Thümmler, SIAM J Appl Dyn Syst 3:85–116, 2004; Rowley et al. Nonlinearity 16:1257–1275, 2003) is well-suited for the long time simulation and numerical approximation of the asymptotic behavior. The theory is illustrated by numerical examples, including a hyperbolic version of the Hodgkin–Huxley equations.  相似文献   

2.
In this paper, we develop a general approach to deal with the asymptotic behavior of traveling wave solutions in a class of three-component lattice dynamical systems. Then we demonstrate an application of these results to construct entire solutions which behave as two traveling wave fronts moving towards each other from both sides of x-axis for a three-species competition system with Lotka–Volterra type nonlinearity in a lattice.  相似文献   

3.
This paper is concerned with the traveling wave solutions of delayed reaction–diffusion systems. By using Schauder’s fixed point theorem, the existence of traveling wave solutions is reduced to the existence of generalized upper and lower solutions. Using the technique of contracting rectangles, the asymptotic behavior of traveling wave solutions for delayed diffusive systems is obtained. To illustrate our main results, the existence, nonexistence and asymptotic behavior of positive traveling wave solutions of diffusive Lotka–Volterra competition systems with distributed delays are established. The existence of nonmonotone traveling wave solutions of diffusive Lotka–Volterra competition systems is also discussed. In particular, it is proved that if there exists instantaneous self-limitation effect, then the large delays appearing in the intra-specific competitive terms may not affect the existence and asymptotic behavior of traveling wave solutions.  相似文献   

4.
In this paper, we study the existence, uniqueness, and global asymptotic stability of traveling wave fronts in a non-local reaction–diffusion model for a single species population with two age classes and a fixed maturation period living in a spatially unbounded environment. Under realistic assumptions on the birth function, we construct various pairs of super and sub solutions and utilize the comparison and squeezing technique to prove that the equation has exactly one non-decreasing traveling wavefront (up to a translation) which is monotonically increasing and globally asymptotic stable with phase shift.   相似文献   

5.
This paper is concerned with the stability of traveling wave fronts for delayed monostable lattice differential equations. We first investigate the existence non-existence and uniqueness of traveling wave fronts by using the technique of monotone iteration method and Ikehara theorem. Then we apply the contraction principle to obtain the existence, uniqueness, and positivity of solutions for the Cauchy problem. Next, we study the stability of a traveling wave front by using comparison theorems for the Cauchy problem and initial-boundary value problem of the lattice differential equations, respectively. We show that any solution of the Cauchy problem converges exponentially to a traveling wave front provided that the initial function is a perturbation of the traveling wave front, whose asymptotic behaviour at \(-\infty \) satisfying some restrictions. Our results can apply to many lattice differential equations, for examples, the delayed cellular neural networks model and discrete diffusive Nicholson’s blowflies equation.  相似文献   

6.
In this paper, we investigate bounded traveling waves of the generalized nonlinear Klein–Gordon model equations by using bifurcation theory of planar dynamical systems to study the effects of horizontal singular straight lines in nonlinear wave equations. Besides the well-known smooth traveling wave solutions and the non-smooth ones, four kinds of new bounded singular traveling wave solution are found for the first time. These singular traveling wave solutions are characterized by discontinuous second-order derivatives at some points, even though their first-order derivatives are continuous. Obviously, they are different from the singular traveling wave solutions such as compactons, cuspons, peakons. Their implicit expressions are also studied in this paper. These new interesting singular solutions, which are firstly founded, enrich the results on the traveling wave solutions of nonlinear equations. It is worth mentioning that the nonlinear equations with horizontal singular straight lines may have abundant and interesting new kinds of traveling wave solution.  相似文献   

7.
8.
Weiguo Rui 《Nonlinear dynamics》2014,76(2):1529-1542
It is well known that it is difficult to obtain exact solutions of some partial differential equations with highly nonlinear terms or high order terms because these kinds of equations are not integrable in usual conditions. In this paper, by using the integral bifurcation method and factoring technique, we studied a generalized Gardner equation which contains both highly nonlinear terms and high order terms, some exact traveling wave solutions such as non-smooth peakon solutions, smooth periodic solutions and hyperbolic function solutions to the considered equation are obtained. Moreover, we demonstrate the profiles of these exact traveling wave solutions and discuss their dynamic properties through numerical simulations.  相似文献   

9.
We prove the existence of multidimensional traveling wave solutions of the bistable reaction-diffusion equation with periodic coefficients under the condition that these coefficients are close to constants. In the case of one space dimension, we prove their asymptotic stability.  相似文献   

10.
In this paper, the Green–Naghdi model is investigated by employing the qualitative method. We classify all traveling wave solutions to this model in specified parameter region of the parameter space. Especially, we study the limiting behavior of all smooth and non-smooth periodic solutions as the parameters tend to some special values. Based on the qualitative results, all exact traveling wave solutions as well as their profiles are also given.  相似文献   

11.
One-dimensional traveling wave solutions for imbibition processes into a homogeneous porous medium are found within a recent generalized theory of macroscopic capillarity. The generalized theory is based on the hydrodynamic differences between percolating and nonpercolating fluid parts. The traveling wave solutions are obtained using a dynamical systems approach. An exhaustive study of all smooth traveling wave solutions for primary and secondary imbibition processes is reported here. It is made possible by introducing two novel methods of reduced graphical representation. In the first method the integration constant of the dynamical system is related graphically to the boundary data and the wave velocity. In the second representation the wave velocity is plotted as a function of the boundary data. Each of these two graphical representations provides an exhaustive overview over all one-dimensional and smooth solutions of traveling wave type, that can arise in primary and secondary imbibition. Analogous representations are possible for other systems, solution classes, and processes.  相似文献   

12.
We use a shooting method to show the existence of traveling wave fronts and to obtain an explicit expression of minimum wave speed for a class of diffusive predator?Cprey systems. The existence of traveling wave fronts indicates the existence of a transition zone from a boundary equilibrium to a co-existence steady state and the minimum wave speed measures the asymptotic speed of population spread in some sense. Our approach is a significant improvement of techniques introduced by Dunbar. The advantage of our method is that it does not need the notion of Wazewski??s set and LaSalle??s invariance principle used in Dunbar??s approach. In our approach, we convert the equations for traveling wave solutions to a system of first order equations by a ??non-traditional transformation??. With this converted new system, we are able to construct a Liapunov function, which gives an immediate implication of the boundedness and convergence of the relevant class of heteroclinic orbits. Our method provides a more efficient way to study the existence of traveling wave solutions for general predator?Cprey systems.  相似文献   

13.
Liang  Jianli  Li  Jibin  Zhang  Yi 《Nonlinear dynamics》2020,101(4):2423-2439

This paper investigates the rotation-Camassa–Holm equation, which appears in long-crested shallow-water waves propagating in the equatorial ocean regions with the Coriolis effect due to the earth’s rotation. The rotation-Camassa–Holm equation contains the famous Camassa–Holm equation and is a special case of the generalized Camassa–Holm equation. By using the approach of dynamical systems and singular traveling wave theory to its traveling wave system, in different parameter conditions of the five-parameter space, the bifurcations of phase portraits are studied. Some exact explicit parametric representations of the smooth solitary wave solutions, periodic wave solutions, peakons and anti-peakons, periodic peakons as well as compacton solutions are obtained.

  相似文献   

14.
In this paper we investigate traveling wave solutions of a non-linear differential equation describing the behaviour of one-dimensional viscoelastic medium with implicit constitutive relations. We focus on a subclass of such models known as the strain-limiting models introduced by Rajagopal. To describe the response of viscoelastic solids we assume a non-linear relationship among the linearized strain, the strain rate and the Cauchy stress. We then concentrate on traveling wave solutions that correspond to the heteroclinic connections between the two constant states. We establish conditions for the existence of such solutions, and find those solutions, explicitly, implicitly or numerically, for various forms of the non-linear constitutive relation.  相似文献   

15.
We classify the weak traveling wave solutions for a class of one-dimensional non-linear shallow water wave models. The equations are shown to admit smooth, peaked, and cusped solutions, as well as more exotic waves such as stumpons and composite waves. We also explain how some previously studied traveling wave solutions of the models fit into this classification.  相似文献   

16.
IntroductionCamassa ,Holm[1]obtainedaclassofnewcompletelyintegrableshallowwaterequation ,i.e.,Camassa_Holmequation2ut+ 2kux-12 uxxt+ 6uux =uxuxxx+ 12 uuxxx. ( 1 )Foreveryk,theEq .( 1 )isaclassofcompletelyintegrablesystem .Thisclassofequationisaclassofnotonlystrangebutalso…  相似文献   

17.
In this paper we consider a class of one-dimensional nonlinear shallow water wave models that support weak solutions. We construct new traveling wave solutions for these models. Moreover, we show that these new traveling wave solutions are stable.  相似文献   

18.
This paper is concerned with front-like entire solutions for monostable reaction-diffusion systems with cooperative and non-cooperative nonlinearities. In the cooperative case, the existence and asymptotic behavior of spatially independent solutions (SIS) are first proved. Further, combining a SIS and traveling fronts with different wave speeds and propagation directions, the existence and various qualitative properties of entire solutions are established by using the comparison principle. In the non-cooperative case, we introduce two auxiliary cooperative systems and establish a comparison theorem for the Cauchy problems of the three systems, and then prove the existence of entire solutions via using the comparison theorem, the traveling fronts and SIS of the auxiliary systems. Our results are applied to some biological and epidemiological models. To the best of our knowledge, it is the first work to study the entire solutions of non-cooperative reaction-diffusion systems.  相似文献   

19.
This paper is concerned with the asymptotic stability towards a rarefaction wave of the solution to an outflow problem for the Navier–Stokes equations in a compressible fluid in the Eulerian coordinate in the half space. This is the second one of our series of papers on this subject. In this paper, firstly we classify completely the time-asymptotic states, according to some parameters, that is the spatial-asymptotic states and boundary conditions, for this initial boundary value problem, and some pictures for the classification of time-asymptotic states are drawn in the state space. In order to prove the stability of the rarefaction wave, we use the solution to Burgers’ equation to construct a suitably smooth approximation of the rarefaction wave and establish some time-decay estimates in L p -norm for the smoothed rarefaction wave. We then employ the L 2-energy method to prove that the rarefaction wave is non-linearly stable under a small perturbation, as time goes to infinity. P. Zhu was supported by JSPS postdoctoral fellowship under P99217.  相似文献   

20.
This paper deals with entire solutions of a nonlocal dispersal epidemic model. Unlike local (random) dispersal problems, a nonlocal dispersal operator is not compact and the solutions of nonlocal dispersal system studied here lack regularity in suitable spaces, which affects the uniform convergence of the solution sequences and the technique details in constructing the entire solutions. In the monostable case, some new types of entire solutions are constructed by combining leftward and rightward traveling fronts with different speeds and a spatially independent solution. In the bistable case, the existence of many different entire solutions with merging fronts are proved by constructing different sub- and super-solutions. Various qualitative features of the entire solutions are also investigated. A key idea is to characterize the asymptotic behaviors of the traveling wave solutions at infinite in terms of appropriate sub- and super-solutions. Finally, we also obtain the smoothness of the entire solutions in space, i.e., the solutions established in our paper are global Lipschitz continuous in space.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号