首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 275 毫秒
1.
研究了聚烯烃高分子共混物的初始相形态及相间界面张力的改变对退火热处理条件下共混物分散相尺寸分布梯度形态形成速度的影响.通过控制共混物共混过程中Brabender转子的转速来控制共混物所受的剪切力大小,可达到控制共混物初始相形态的目的.通过SEM电镜观察相形态,并利用计算机图象分析仪得到分散粒子的粒径及其分布数据.研究结果表明,转子转速越大,即共混物所受的剪切力越大,分散相初始粒径越小,且分散也越均匀.初始粒径较小的样品退火后形成梯度的速度相对较快.选用体系聚丙烯(PP)/乙烯 醋酸乙烯酯共聚物(EVAc)、聚乙烯(PE)/EVAc及改变EVAc中的醋酸乙烯酯(VAc)含量与PE共混对比研究了不同相界面张力对梯度化速度的影响.结果表明,上述各体系退火热处理后均可形成梯度相形态,且相间界面张力越大.高分子共混物中梯度相形态形成速度也越快  相似文献   

2.
近年来高分子共混体系中的界面,表面效应逐渐引起了越来越多研究者的兴越,人们发现,当共混物薄膜厚度减至一定程度时,聚合物共混物薄膜中的相形态,相容性和相分离动力学与本体中有较大的不同^[1~3].基板界面作用对共混薄膜体的热力学,动力学行为产生很大的影响,我们以往的研究^[4,5]也发现,PP/EVAc(70/30)共混体系退火过程中,基板界面(如玻璃)作用可大大加速分散相(EVAc)粒子的粗化凝聚过程,本研究用聚甲基丙烯酸甲酯和聚苯乙烯共混物押氢呋喃深液在不同在板介质(如玻璃基板,PP基板)上成膜,用相产左显微镜观测了膜的相形态变化并确定共混和的的相逆转区域,用界面张力和共混物薄膜上下表面的ATR-FTIR实验结果探讨了成膜过程中的基板界面效应对相逆转区域的影响。  相似文献   

3.
EVA增容PP/HDPE共混体系的形态结构与性能   总被引:4,自引:0,他引:4  
采用乙烯-醋酸乙烯酯共聚物(EVA)作为聚丙烯(PP)/高密度聚乙烯(HDPE)共混体系的增容剂,通过冲击实验、拉伸实验、示差量热扫描仪(DSC)和扫描电镜(SEM),系统地研究了共混体系的性能与其形态结构之间的。结果表明,EVA是PP/HDPE共混物较好物增容剂,EVA可以使PP、HDPE的晶相结构受到一定程度的破坏,增加PP和HDPE的相容性,同时共混物的冲击韧性明显提高。  相似文献   

4.
用力学性能测试,DMA、SEM等方法研究了离聚物Surlyn对PBT/PP共混体系的力学性能及形态结构的影响。结果表明,在PBT/PP共混体系中引入少量Surlyn可以改善界面的粘接性,从而改善其力学性能。  相似文献   

5.
通过在高分子共混物内部引入不同的第三相界面,系统地研究了退火热处理条件下界面对于共混物梯度相形态形成的影响,对具有一定初始粒径的共混物体系或初始近似为均相的共混体系,在第三相界面的诱导下,均能形成梯度相形态。探讨了诱导界面间距与体系相结构的关系。结果表明,当两个诱导界面间距小于所生成梯度层厚度的两倍时,梯度结构趋于交叠。继续减小透导界面间距,则梯度结构趋于消失,诱导界面间共混物中分散相粒子快速长大,界面的诱导作用遍布整个样片,证实了我们所提出的“高分子共混物中二维条件下界面诱导加速分散相粒子粗化凝聚”的结论。  相似文献   

6.
高分子共混物梯度相结构形成过程中的界面效应   总被引:5,自引:0,他引:5  
通过在高分子共混物内部引入不同的第三相界面,系统地研究了退火热处理条件下该界面对于共混物梯度相形态形成的影响.对具有一定初始粒径的共混物体系或初始近似为均相的共混体系,在第三相界面的诱导下,均能形成梯度相形态.探讨了诱导界面间距与体系相结构的关系.结果表明,当两个诱导界面间距小于所生成梯度层厚度的两倍时,梯度结构趋于交叠.继续减小诱导界面间距,则梯度结构趋于消失,诱导界面间共混物中分散相粒子快速长大,界面的诱导作用遍布整个样片,证实了我们所提出的“高分子共混物中二维条件下界面诱导加速分散相粒子粗化凝聚”的结论.  相似文献   

7.
多相高分子共混物熔体中微区的发展机理,决定着体系的最终相结构.所以研究共混物熔体或溶液中的微区聚结机理已越来越显得重要和必要.作者先前的研究工作表明[1~6],通过简单共混得到的均匀共混体系(如PP/EVAc),在一定的退火热处理条件下,会自组织形成梯度相结构,即分散相粒子尺寸及其浓度从样品中心到表面逐渐增大.作者认为,这一结构的形成主要与基板对共混体系粗化过程的影响作用有关.初步认为是由于体系分散相聚结过程中,共混组分对基板的选择性浸润析出而导致了这种特殊的结构,亦可称为基板诱导相结构的形成.…  相似文献   

8.
温度梯度引起的聚合物共混物梯度相形态的研究   总被引:4,自引:0,他引:4  
研究了两相不相容聚合物共混物在静态退火时,由温度梯度引起的分散相尺寸的空间分布梯度相形态,讨论了分散相体积分数和两相之间界面张力对梯度形态形成的影响.应用接触凝聚模型计算了在温度梯度作用下,分散相粒子的粗化过程.计算结果表明,界面张力越大,或者分散相体积分数越大,形成的梯度相形态越明显;并且在温度梯度存在下,分散相粒子粗化的速度加快.  相似文献   

9.
POM/EVA共混物的研究   总被引:2,自引:0,他引:2  
用力学测试、扫描电镜(SEM)、热分析(DSC)等手段研究了聚甲醛(POM)与乙烯-醋酸乙烯酯共聚物(EVA)共混物(POM/EVA)的力学性能及其微同形态;用聚甲醛与马来酸二丁酯(DBM)的接枝物(POM-g-DBM)作相溶剂,能改变共的两相间的粘结力,从而提出了共混物的力学性能,SEM观察表明接枝物的加入改变了POM/EVA共混物的断裂方式,微观形态及结晶性能,对其热性能影响不大;通过改变PO  相似文献   

10.
研究了动态硫化EPDM/PP共混物中PP相的结晶度及晶体结构,同时讨论了制备工艺条件以共混物中PP相的结晶度和晶体结构的影响。结果表明:在动态硫化EPDM/PP共混物中,硫化的EPDM的分子键没有穿入PP的晶区,PP的结晶度随EPDM含量的增加而下降。提高共混温度,加入软化剂或碳黑均使共混物中PP的结晶度降低,共混时间15min时,共混物中PP相的结晶度最低,但PP的晶格不受制备工艺条件的影响。  相似文献   

11.
Immiscible ternary blends of PET/EVA/PP (PET as the matrix and (PP/EVA) composition ratio = 1/1) were prepared by melt mixing. Scanning electron microscope results showed core‐shell type morphology for this ternary blend. Binary blends of PET/PP and PET/EVA were also prepared as control samples. Two grades of EVA with various viscosities, one higher and the other one lower than that of PP, were used to investigate the effect of components' viscosity on the droplet size of disperse phase. The effect of interfacial tension, elasticity, and viscosity on the disperse phase size of both binary and ternary blends was investigated. Variation of tensile modulus of both binary and ternary blends with dispersed phase content was also studied. Experimental results obtained for modulus of PET/EVA binary blends, showed no significant deviations from Takayanagi model, where considerable deviations were observed for PET/PP binary blends. Here, this model that has been originally proposed for binary blends was improved to become applicable for the prediction of the tensile modulus of ternary blends. The new modified model showed good agreement with the experimental data obtained in this study. © 2009 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 48: 251–259, 2010  相似文献   

12.
The dynamic mechanical and dielectric behaviours of Polypropylene (PP) and (Ethylene-Vinyl Acetate) Copolymer (EVA) blends are reported as a function of the morphology. For EVA contents lower than 20%, blends show the two-phase morphology characteristic of immiscible blends, with spherical EVA droplets finely dispersed in the PP matrix. After stretching in the molten state, the morphology of EVA fibers is observed. Mechanical Relaxation Spectroscopy display three relaxation processes: the EVA and PP α-relaxations associated to the glass transitions and a β-transition corresponding to a PP crystalline phase relaxation. The PP α-relaxation shifts to higher temperatures when EVA presents a fiber morphology, corresponding to a decrease of PP chain mobility since it is hindered by the reinforcement effect of EVA fibers. Quite different results are obtained by DRS analysis. In blends containing EVA fibers, only one main relaxation associated to the EVA α-transition is observed whereas one additional relaxation can be noticed in the blends containing EVA droplets. This new relaxation might be assigned to interfacial polarization effects, phenomena that are sometimes observed in heterogeneous polymer blends when a low content of one polar component is embedded in a non conductive matrix. In this case, the occurrence of a characteristic interfacial polarization relaxation appears to be correlated to the accessible experimental frequency.  相似文献   

13.
Immiscible polypropylene/ethylene‐co‐vinyl acetate (PP/EVA) blends with two different compositions, one (PP/EVA = 80/20) exhibits the typical sea‐island morphology and the other (PP/EVA = 60/40) exhibits the cocontinuous morphology, were prepared with different contents of f‐MWCNTs. The fracture behaviors, including notched Izod impact fracture and single‐edge notched tensile (SENT) fracture, were comparatively studied to establish the role of f‐MWCNTs in influencing the fracture toughness of PP/EVA blends. Our results showed that, for PP/EVA (80/20) system, f‐MWCNTs do not induce the fracture behavior change apparently. However, for PP/EVA (60/40) system, the fracture toughness of the blend increases dramatically with the increasing of f‐MWCNTs content. More severe plastic deformation accompanied by the fibrillar structure formation was observed during the SENT test. Furthermore, SENT test shows that the significant improvement in fracture toughness of PP/EVA (60/40) with f‐MWCNTs is contributed to the simultaneous enhancement of crack initiation energy and crack propagation energy, but largely dominated by crack propagation stage. Further results based on crystalline structures and morphologies of the blends showed that a so‐called dual‐network structure of EVA and f‐MWCNTs forms in cocontinuous PP/EVA blends, which is thought to be the main reason for the largely improved fracture toughness of the sample. © 2009 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 47: 1331–1344, 2009  相似文献   

14.
熔融共混制备了不同组分比的聚乳酸(PLA)/乙烯-醋酸乙烯酯共聚物(EVA)共混物,采用扫描电子显微镜(SEM)、溶剂选择性蚀刻和旋转流变仪研究了共混物不相容的相形态及其黏弹响应.研究结果表明,PLA/EVA共混物为典型的热力学不相容体系,两基体组分间的界面张力约为2.2 mN/m;因此随组分比的不同,共混物表现出"海-岛"分散和双连续的不相容相形态;体系中EVA的相反转浓度约为50 wt%~60 wt%,这与黏性模型对相反点预测的结果一致;与双连续相形态的体系相比,乳液模型能够更好的描述具有"海-岛"分散形态的体系的线性黏弹响应,共混体系相对较宽的相反转区域主要源于两组分间较大的弹性比以及EVA自身的屈服行为.  相似文献   

15.
The breaking thread and the sessile drop methods have been used to evaluate the interfacial tension between a polypropylene (PP) and a polyethylene-terephthalate (PET). An excellent correlation was found between the two. The breaking thread technique was then used to evaluate the interfacial tension of these blends at various levels of a styrene-ethylene butylene-styrene grafted with maleic anhydride (SEBS-g-MA) compatibilizer. In order to evaluate the relative roles of coalescence and interfacial tension in controlling dispersed phase size reduction during compatibilization, the morphology of PP/PET 1/99 and 10/90 blends compatibilized by a SEBS-g-MA were studied and compared. The samples were prepared in a Brabender mixer. For the 10/90 blend, the addition of the compatibilizer leads to a typical emulsification curve, and a decrease in dispersed phase size of 3.4 times is observed. For the 1/99 blend, a 1.7 times reduction in particle size is observed. In the latter case, this decrease can only be attributed to the decrease of the interfacial tension. It is evident from these results that the drop in particle size for the 10/90 PP/PET blend after compatibilization is almost equally due to diminished coalescence and interfacial tension reduction. These results were corroborated with the interfacial tension data in the presence of the copolymer. A direct relationship between the drop in dispersed phase size for the 1/99 PP/PET blend and the interfacial tension reduction was found for this predominantly shear mixing device. © 1997 John Wiley & Sons, Inc. J Polym Sci B: Polym Phys 35 : 2271–2280, 1997  相似文献   

16.
Rheology, morphology and mechanical properties of binary PE and EVA blends together with their thermal behavior were studied. The results of rheological studies showed that, for given PE and EVA, the interfacial interaction in PE-rich blends is higher than EVA-rich blends, which in turn led to finer and well-distributed morphology in PE-rich blends. Using two different models, the phase inversion composition was predicted to be in 45 and 47 wt% of the PE phase. This was justified by morphological studies, where a clear co-continuous morphology for 50/50 blend was observed. The tensile strength for PE-rich blends showed positive deviation from mixing rule, whereas the 50/50 blend and EVA-rich blends displayed negative deviation. These results were in a good agreement with the results of viscoelastic behavior of the blends. The elongation at break was found to follow the same trend as tensile strength except for 90/10 PE/EVA blend. The latter was explained in terms of the effect of higher co-crystallization in 90/10 composition, which increased the tensile strength and decreased the elongation at break in this composition. The results of thermal behavior of the blends indicated that the melting temperatures of PE and EVA decrease and increase, respectively, due to the dilution effect of EVA on PE and nucleation effect of PE on EVA.  相似文献   

17.
Super-toughened poly(lactic acid) (PLA)/poly(ethylene-co-vinyl acetate) (EVA) blends were prepared via 2,5-dimethyl-2,5-di(tert-butylperoxy)hexane (AD) induced dynamic vulcanization and in situ interfacial compatibilization. The effects of AD on the morphology and properties of PLA/EVA blends were studied using a Brabender torque rheometer, gel content test, scanning electron microscopy (SEM), differential scanning calorimetry (DSC) thermogravimetric analysis (TGA) and mechanical properties test. The torque and gel content demonstrated that EVA and PLA was successfully vulcanized in the presence of free radicals obtained by the decomposition of the 2,5-dimethyl-2,5-di(tert-butylperoxy)hexane (AD). Additionally, the gel content results indicated that, compared with PLA, EVA is more aggressive with free radicals. The SEM revealed that a relatively uniform phase morphology and good interfacial compatibilization were achieved in the dynamically vulcanized PLA/EVA/AD blends. The interfacial reaction and compatibilization between the component polymers resulted in the formation of super-toughened PLA/EVA blended materials.  相似文献   

18.

The effects of various compatibilizers on thermal, mechanical and morphological properties of 50/50 polypropylene/polystyrene blends were investigated. Various compatibilizers, polystyrene-(ethylene/butylenes/ styrene) (SEBS), ethylene vinyl acetate (EVA), polystyrene-butylene rubber (SBR) and blend of compatibilizers SEBS/PP-g-MAH, EVA/PP-g-MAH, and SBR/PP-g-MAH were used. Differential scanning calorimetry, thermogravimetric analysis, wide-angle X-ray scattering, scanning electron microscopy, microhardness, and Izod impact strength were adopted. It was found that the influence of various compatibilizers was appeared on all the properties studied. The properties of the blends compatibilized with SEBS, EVA, and SBR are very distinct from those of blends compatibilized with blend of compatibilizers. Results show that compatibilized blends with the blend of compatibilizers EVA/PP-g-MAH, SBR/PP-g-MAH, and SEBS/PP-g-MAH or SBR were relatively more stable than the uncompatibilized blend and blend compatibilized with SEBS or EVA. The compatibilizer does not only reduce the interfacial tension or increase the phase interfacial adhesion between the immiscible polymers, but greatly affects the degree of crystallinity of blends.

  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号