首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The separation of rare-earth ions from one another is challenging due to their chemical and physical similarities. Nearly all rare-earth separations rely upon small changes in ionic radii to direct speciation or reactivity. Herein, we show that the intrinsic magnetic properties of the rare-earth ions impact the separations of light/heavy and selected heavy/heavy binary mixtures. Using TriNOx3− ([{(2-tBuNO)C6H4CH2}3N]3−) rare-earth complexes, we efficiently and selectively crystallized heavy rare earths (Tb–Yb) from a mixture with light rare earths (La and Nd) in the presence of an external Fe14Nd2B magnet, concomitant with the introduction of a concentration gradient (decrease in temperature). The optimal separation was observed for an equimolar mixture of La:Dy, which gave an enrichment factor of EFLa:Dy=297±31 for the solid fraction, compared to EFLa:Dy=159±22 in the absence of the field, and achieving a 99.7 % pure Dy sample in one step. These results indicate that the application of a magnetic field can improve performance in a molecular separation system for paramagnetic rare-earth cations.  相似文献   

2.
Rare‐earth metals are critical components of electronic materials and permanent magnets. Recycling of consumer materials is a promising new source of rare earths. To incentivize recycling there is a clear need for simple methods for targeted separations of mixtures of rare‐earth metal salts. Metal complexes of a tripodal nitroxide ligand [{(2‐tBuNO)C6H4CH2}3N]3? (TriNOx3?), feature a size‐sensitive aperture formed of its three η2‐(N,O) ligand arms. Exposure of metal cations in the aperture induces a self‐associative equilibrium comprising [M(TriNOx)thf]/ [M(TriNOx)]2 (M=rare‐earth metal). Differences in the equilibrium constants (Keq) for early and late metals enables simple Nd/Dy separations through leaching with a separation ratio SNd/Dy=359.  相似文献   

3.
Purification of rare earth elements is challenging due to their chemical similarities. All of the deployed separation methods rely on thermodynamic properties, such as distribution equilibria in solvent extraction. Rare‐earth‐metal separations based on kinetic differences have not been examined. Herein, we demonstrate a new approach for rare‐earth‐element separations by exploiting differences in the oxidation rates within a series of rare earth compounds containing the redox‐active ligand [{2‐(t BuN(O))C6H4CH2}3N]3−. Using this method, a single‐step separation factor up to 261 was obtained for the separation of a 50:50 yttrium–lutetium mixture.  相似文献   

4.
Two series of isostructural C3‐symmetric Ln3 complexes Ln3 ? [BPh4] and Ln3 ? 0.33[Ln(NO3)6] (in which LnIII=Gd and Dy) have been prepared from an amino‐bis(phenol) ligand. X‐ray studies reveal that LnIII ions are connected by one μ2‐phenoxo and two μ3‐methoxo bridges, thus leading to a hexagonal bipyramidal Ln3O5 bridging core in which LnIII ions exhibit a biaugmented trigonal‐prismatic geometry. Magnetic susceptibility studies and ab initio complete active space self‐consistent field (CASSCF) calculations indicate that the magnetic coupling between the DyIII ions, which possess a high axial anisotropy in the ground state, is very weakly antiferromagnetic and mainly dipolar in nature. To reduce the electronic repulsion from the coordinating oxygen atom with the shortest Dy?O distance, the local magnetic moments are oriented almost perpendicular to the Dy3 plane, thus leading to a paramagnetic ground state. CASSCF plus restricted active space state interaction (RASSI) calculations also show that the ground and first excited state of the DyIII ions are separated by approximately 150 and 177 cm?1, for Dy3 ? [BPh4] and Dy3 ? 0.33[Dy(NO3)6], respectively. As expected for these large energy gaps, Dy3 ? [BPh4] and Dy3 ? 0.33[Dy(NO3)6] exhibit, under zero direct‐current (dc) field, thermally activated slow relaxation of the magnetization, which overlap with a quantum tunneling relaxation process. Under an applied Hdc field of 1000 Oe, Dy3 ? [BPh4] exhibits two thermally activated processes with Ueff values of 34.7 and 19.5 cm?1, whereas Dy3 ? 0.33[Dy(NO3)6] shows only one activated process with Ueff=19.5 cm?1.  相似文献   

5.
Abstraction of a chloride ligand from the dysprosium metallocene [(Cpttt)2DyCl] ( 1Dy Cpttt=1,2,4‐tri(tert ‐butyl)cyclopentadienide) by the triethylsilylium cation produces the first base‐free rare‐earth metallocenium cation [(Cpttt)2Dy]+ ( 2Dy ) as a salt of the non‐coordinating [B(C6F5)4] anion. Magnetic measurements reveal that [ 2Dy ][B(C6F5)4] is an SMM with a record anisotropy barrier up to 1277 cm−1 (1837 K) in zero field and a record magnetic blocking temperature of 60 K, including hysteresis with coercivity. The exceptional magnetic axiality of 2Dy is further highlighted by computational studies, which reveal this system to be the first lanthanide SMM in which all low‐lying Kramers doublets correspond to a well‐defined MJ value, with no significant mixing even in the higher doublets.  相似文献   

6.
Individual rare earth impurities in high purity La2O3 (99.9%) have been determined by NAA after pre-separation of the matrix (La). The separation is carried out on an anion exchanger (Dowex 1×8) using different mixtures of methanol/nitric acid as eluants. The rare earth elements from Dy to Lu are eluted quantitatively using a 10% 1M HNO3-90% methanol mixture, while the light rare earths from Ce to Gd are eluted quantitatively using a 10% 0.05M HNO3-90% methanol mixture. La, which is retained on the column, is eluted using 0.1M HNO3. The recoveries of the various rare earth elements have been checked using radiotracers and also by spiking the sample with known amount of elements, and the recoveries are found to be quantitative. Results obtained on a typical high purity lanthanum oxide are reported here.  相似文献   

7.
Mutual separation of the individual rare earth elements (exception of cerium) in monazite from different districts was investigated by cation exchange elution method. Strong acid type cation exchange resin, Bio-Rad AG 50 Wx8 and eluting solution of a α-hydroxyisobutyric acid (α-HIBA) were used. Radioactivity tagged Eu-152, 154 or Tb-160 were used as radio active indicator for determination of the distribution coefficients by batch method or for the study of column elution conditions. By gradiently increase of the pH values from 3 to 5 in 0.3 M α-HIBA eluting solution, complete mutual separation of individual rare earth elements, exception of Dy and Y, were obtained. Dy and Y could not be separated by this scheme of separation and their elution zones were overlapped. Rare earth mixture samples of monazite from different districts were separated with this scheme and these results were compared. From this comparison followings were noticed; 1. Compositions of rare earth elements in monazite from different districts are evidently not alike. 2. Samples from Brazil and Southwestern Coast of Taiwan are much more alike in their compositions but not for those from Australia and Outskirt Island. 3. Sample from Outskirt Island has higher in contents of heavier rare earths and also Nd was higher than La.  相似文献   

8.
A salen‐type Dy2 complex [Dy2(L)(MeOH)2(CH3COO)4] · 2(MeOH) was isolated and magnetically characterized, in which one hexadentate ligand H2L [H2L = N,N‐bis(2‐oxy‐3‐methoxybenzylidene)‐1,2‐phenylenediamine] chelated two DyIII ions, one is located on the apical position of the inner N2O2 site, leaving the outer O2O2 cavity for another DyIII ion. There are two distinct local coordination environments presented as square antiprism (D4d) for Dy1 and biaugmented trigonal prism (C2v) for Dy2. Magnetic measurements reveal that the ferromagnetic interaction between two DyIII ions occurred within low temperature range and accompanied with significant slow magnetic relaxation behavior with energy barriers to the reversal of magnetization Ueff/KB = 40 K under zero dc field.  相似文献   

9.
The rational synthesis of the 2‐{1‐methylpyridine‐N‐oxide‐4,5‐[4,5‐bis(propylthio)tetrathiafulvalenyl]‐1H‐benzimidazol‐2‐yl}pyridine ligand ( L ) is described. It led to the tetranuclear complex [Dy4(tta)12( L )2] ( Dy‐Dy2‐Dy ) after coordination reaction with the precursor Dy(tta)3?2 H2O (tta?=2‐thenoyltrifluoroacetonate). The X‐ray structure of Dy‐Dy2‐Dy can be described as two terminal mononuclear units bridged by a central antiferromagnetically coupled dinuclear complex. The terminal N2O6 and central O8 environments are described as distorted square antiprisms. The ac magnetism measurements revealed a strong out‐of‐phase signal of the magnetic susceptibility with two distinct sets of data. The high‐ and low‐frequency components were attributed to the two terminal mononuclear single‐molecule magnets (SMMs) and the central dinuclear SMM, respectively. A magnetic hysteresis loop was detected at very low temperature. From both structural and magnetic points of view, the tetranuclear SMM Dy‐Dy2‐Dy is a self‐assembly of two known mononuclear SMMs bridged by a known dinuclear SMM.  相似文献   

10.
Mixed systems of a series of rare earth metals such as La, Ce, Pr, Nd, Sm, Eu, and Yb and their low-valent rare earth diiodides exhibit excellent reducing ability toward the reductive deiodation from 1-iodododecane as a model compound compared with their single systems. More importantly, under photoirradiation conditions, the C-I bond reduction using ‘Ln/LnI2’ takes place efficiently in refluxing THF, even in the cases of heavy rare earths such as Gd, Tb, Dy, Ho, Er, and Tm.  相似文献   

11.
Three dinuclear lanthanide complexes [Ln2(H2L)2(NO3)4] [Ln = Dy ( 1 ), Tb ( 2 ), and Gd ( 3 )] [H3L = 2‐hydroxyimino‐N′‐[(2‐hydroxy‐3‐methoxyphenyl)methylidene]‐propanohydrazone] were solvothermally synthesized by varying differently anisotropic rare earth ions. Single‐crystal structural analyses demonstrate that all the three complexes are crystallographically isostructural with two centrosymmetric LnIII ions aggregated by a pair of monodeprotonated H2L anions. Weak intramolecular antiferromagnetic interactions with different strength were mediated by a pair of phenoxo bridges due to superexchange and/or single‐ion anisotropy. Additionally, the DyIII‐based entity shows the strongest anisotropy exhibits field‐induced single‐molecule magnetic behavior with two thermally activated relaxation processes. In contrast, 3 with isotropic GdIII ion has a significant cryogenic magnetocaloric effect with the maximum entropy change of 25.7 J · kg–1 · K–1 at 2.0 K and 70.0 kOe.  相似文献   

12.
Combined density functional and ab initio calculations are performed on two isomorphous tetranuclear {Ni3IIILnIII} star‐type complexes [Ln=Gd ( 1 ), Dy ( 2 )] to shed light on the mechanism of magnetic exchange in 1 and the origin of the slow magnetization relaxation in complex 2 . DFT calculations correctly reproduce the sign and magnitude of the J values compared to the experiments for complex 1 . Acute ?Ni?O?Gd bond angles present in 1 instigate a significant interaction between the 4fxyz orbital of the GdIII ion and 3d orbital of the NiII ions, leading to rare and strong antiferromagnetic Ni???Gd interactions. Calculations reveal the presence of a strong next‐nearest‐neighbour Ni???Ni antiferromagnetic interaction in complex 1 leading to spin frustration behavior. CASSCF+RASSI‐SO calculations performed on complex 2 suggest that the octahedral environment around the DyIII ion is neither strong enough to stabilize the mJ |±15/2〉 as the ground state nor able to achieve a large ground‐state–first‐excited‐state gap. The ground‐state Kramers doublet for the DyIII ion is found to be the mJ |±13/2〉 state with a significant transverse anisotropy, leading to very strong quantum tunneling of magnetization (QTM). Using the POLY_ANISO program, we have extracted the JNiDy interaction as ?1.45 cm?1. The strong Ni???Dy and next‐nearest‐neighbour Ni???Ni interactions are found to quench the QTM to a certain extent, resulting in zero‐field SMM behavior for complex 2 . The absence of any ac signals at zero field for the structurally similar [Dy(AlMe4)3] highlights the importance of both the Ni???Dy and the Ni???Ni interactions in the magnetization relaxation of complex 2 . To the best of our knowledge, this is the first time that the roles of both the Ni???Dy and Ni???Ni interactions in magnetization relaxation of a {3d–4f} molecular magnet have been established.  相似文献   

13.
Two novel trinuclear complexes [ZnCl(μ‐L)Ln(μ‐L)ClZn][ZnCl3(CH3OH)]?3 CH3OH (LnIII=Dy ( 1 ) and Er ( 2 )) have been prepared from the compartmental ligand N,N′‐dimethyl‐N,N′‐bis(2‐hydroxy‐3‐formyl‐5‐bromo‐benzyl)ethylenediamine (H2L). X‐ray studies reveal that LnIII ions are coordinated by two [ZnCl(L)]? units through the phenoxo and aldehyde groups, giving rise to a LnO8 coordination sphere with square‐antiprism geometry and strong easy‐axis anisotropy of the ground state. Ab initio CASSCF+RASSI calculations carried out on 1 confirm that the ground state is an almost pure MJ=±15/2 Kramers doublet with a marked axial anisotropy, the magnetic moment is roughly collinear with the shortest Dy?O distances. This orientation of the local magnetic moment of the DyIII ion in 1 is adopted to reduce the electronic repulsion between the oblate electron shape of the MJ=±15/2 Kramers doublet and the phenoxo‐oxygen donor atoms involved in the shortest Dy?O bonds. CASSCF+RASSI calculations also show that the ground and first excited states of the DyIII ion are separated by 129 cm?1. As expected for this large energy gap, compound 1 exhibits, in a zero direct‐current field, thermally activated slow relaxation of the magnetization with a large Ueff=140 K. The isostructural Zn–Er–Zn species does not present significant SMM behavior as expected for the prolate electron‐density distribution of the ErIII ion leading to an easy‐plane anisotropy of the ground doublet state.  相似文献   

14.
Raman spectra of rare earth (REE: rare earth elements) trichloride (REE = Y, La, Ce, Pr, Sm, Gd, Dy, or Yb) dissolved in alkali chloride eutectic melts (LiCl‐KCl, LiCl‐RbCl, and LiCl‐CsCl) were measured at 793 K. The spectra showed polarized peaks centered around 240–270 cm–1, which were identified as the totally symmetric stretching vibration (ν1) of the octahedral REECl63–. The ν1 frequency increased with the polarizing power of the trivalent REE ions. The change in the ν1 frequency was found to be larger for lighter lanthanides. This was attributable to the distortion of the Oh symmetry of REECl63–.  相似文献   

15.
Time‐domain synchrotron Mössbauer spectroscopy (SMS) based on the Mössbauer effect of 161Dy has been used to investigate the magnetic properties of a DyIII‐based single‐molecule magnet (SMM). The magnetic hyperfine field of [Dy(Cy3PO)2(H2O)5]Br3?2 (Cy3PO)?2 H2O?2 EtOH is with B0=582.3(5) T significantly larger than that of the free‐ion DyIII with a 6H15/2 ground state. This difference is attributed to the influence of the coordinating ligands on the Fermi contact interaction between the s and 4f electrons of the DyIII ion. This study demonstrates that 161Dy SMS is an effective local probe of the influence of the coordinating ligands on the magnetic structure of Dy‐containing compounds.  相似文献   

16.
The use of thorium dioxide as a nuclear fuel requires the determination of individual rare earth impurities at 0.08–1 mg kg?1 levels. Neutron activation is sufficiently sensitive but separation from the matrix is essential. In the proposed method, thorium dioxide (5–20 g) is dissolved in concentrated nitric acid with a little hydrofluoric acid; after evaporation, thorium is complexed with ammonium carbonate and the solution is passed through a small column of Chelex-100 resin which retains the rare earths quantitatively without retaining thorium. The rare earth elements are eluted with dilute nitric acid, concentrated, and irradiated with standards; after irradiation the rare earth are collected on a lanthanum carrier and measured by γ-ray spectrometry. The recoveries of rare earths were checked with tracers and by standard addition to thorium dioxide matrices. The reproducibility for La, Eu and Dy was satisfactory at 0.01, 0.003 and 0.002 mg kg?1, respectively; as was the reproducibility for all rare earths added to thorium dioxide (1–4 μg/5 g). Limits of detection are adequate for certification of nuclear-grade material.  相似文献   

17.
The synthesis, gas sorption studies, magnetic properties, and theoretical studies of new molecular wheels of core type {MnIII8LnIII8} (Ln=Dy, Ho, Er, Y and Yb), using the ligand mdeaH2, in the presence of ortho‐toluic or benzoic acid are reported. From the seven wheels studied the {Mn8Dy8} and {Mn8Y8} analogues exhibit SMM behavior as determined from ac susceptibility experiments in a zero static magnetic field. From DFT calculations a S=16 ground state was determined for the {Mn8Y8} complex due to weak ferromagnetic MnIII–MnIII interactions. Ab initio CASSCF+RASSI‐SO calculations on the {Mn8Dy8} wheel estimated the MnIII–DyIII exchange interaction as ?0.1 cm?1. This weak exchange along with unfavorable single‐ion anisotropy of DyIII/MnIII ions, however, led to the observation of SMM behavior with fast magnetic relaxation. The orientation of the g‐anisotropy of the DyIII ions is found to be perpendicular to the plane of the wheel and this suggests the possibility of toroidal magnetic moments in the cluster. The {Mn8Ln8} clusters reported here are the largest heterometallic MnIIILnIII wheels and the largest {3d–4f} wheels to exhibit SMM behavior reported to date.  相似文献   

18.
Rare earth fluoride stability constants for Ce, Eu, Gd, Tb and Yb at 25°C have been determined by examining the influence of fluoride ions on the distribution of rare earths between tributyl phosphate (TBP) and 0.68M NaClO4. Our results indicate that rare earth mono and difluoro complexation constants show a steady increase as a function of atomic number from La to Tb but remain relatively constant after Dy. This behavior is similar to that which has been observed for dicarboxylic acids. Stepwise stability constant ratios, K2/K1, obtained in our work (where K1=[MF2+][M3+]–1[F]–1 and K2=[MF 2 + ]–1[MF2+]–1[F]–1) indicated that, for all rare earths, K2/K1=0.09±0.03.  相似文献   

19.
沈之荃  祝桂香  凌君 《中国化学》2002,20(11):1369-1374
IntroductionAliphaticpolyestersandpolycarbonateshaveattract edgrowinginterestfortheirexcellentpropertiesofbiodegradability ,biocompatibilityandlowtoxicity .Theirexpectedusesincludedrugdeliverymedium ,surgicalsu tures ,bodyimplantmaterials ,cellculturesubst…  相似文献   

20.
In the research field of single-molecule magnets (SMMs), lanthanoid–lanthanoid interactions, so-called f–f interactions, are known to affect the SMM properties, although their magnitudes are small. In this article, an SMM with very weak f–f interactions is reported, and the effects of the interactions on the SMM properties are discussed. X-ray structural analysis of the DyIII-CdII-phthalocyaninato sextuple-decker complex (Dy2Cd3) reveals that the intramolecular Dy−Dy length in Dy2Cd3 is more than 13 Å, which is longer than the intermolecular Dy−Dy length. Even though the two DyIII ions are far apart, intermolecular ferromagnetic dipole–dipole interactions are observed in Dy2Cd3. From detailed analysis of ac magnetic susceptibilities, quantum tunneling of the magnetization (QTM) in Dy2Cd3 is partially suppressed owing to the existence of very weak Dy−Dy interactions. Our results show that even very weak Dy−Dy interactions act as a dipolar bias, suppressing QTM.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号