首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The electrocatalytic conversion of CO2 to value‐added hydrocarbons is receiving significant attention as a promising way to close the broken carbon‐cycle. While most metal catalysts produce C1 species, such as carbon monoxide and formate, the production of various hydrocarbons and alcohols comprising more than two carbons has been achieved using copper (Cu)‐based catalysts only. Methods for producing specific C2 reduction outcomes with high selectivity, however, are not available thus far. Herein, the morphological effect of a Cu mesopore electrode on the selective production of C2 products, ethylene or ethane, is presented. Cu mesopore electrodes with precisely controlled pore widths and depths were prepared by using a thermal deposition process on anodized aluminum oxide. With this simple synthesis method, we demonstrated that C2 chemical selectivity can be tuned by systematically altering the morphology. Supported by computational simulations, we proved that nanomorphology can change the local pH and, additionally, retention time of key intermediates by confining the chemicals inside the pores.  相似文献   

2.
Production of multicarbon products (C2+) from CO2 electroreduction reaction (CO2RR) is highly desirable for storing renewable energy and reducing carbon emission. The electrochemical synthesis of CO2RR catalysts that are highly selective for C2+ products via electrolyte‐driven nanostructuring is presented. Nanostructured Cu catalysts synthesized in the presence of specific anions selectively convert CO2 into ethylene and multicarbon alcohols in aqueous 0.1 m KHCO3 solution, with the iodine‐modified catalyst displaying the highest Faradaic efficiency of 80 % and a partial geometric current density of ca. 31.2 mA cm?2 for C2+ products at ?0.9 V vs. RHE. Operando X‐ray absorption spectroscopy and quasi in situ X‐ray photoelectron spectroscopy measurements revealed that the high C2+ selectivity of these nanostructured Cu catalysts can be attributed to the highly roughened surface morphology induced by the synthesis, presence of subsurface oxygen and Cu+ species, and the adsorbed halides.  相似文献   

3.
Fischer-Tropsch synthesis (FTS) has the potential to be a powerful strategy for producing liquid fuels from syngas if highly selective catalysts can be developed. Herein, a series of iron nanoparticle catalysts encapsulated by nitrogen-doped graphitic carbon were prepared by a one-step pyrolysis of a ferric L-glutamic acid complex. The FeC-800 catalyst pyrolyzed at 800 °C showed excellent catalytic activity (239.4 μmolCO gFe–1 s–1), high C5–C11 selectivity (49%), and good stability in FTS. The high dispersion of ferric species combined with a well-encapsulated structure can effectively inhibit the migration of iron nanoparticles during the reaction process, which is beneficial for high activity and good stability. The nitrogen-doped graphitic carbon shell can act as an electron donor to the iron particles, thus promoting CO activation and expediting the formation of Fe5C2, which is the key factor for obtaining high C5–C11 selectivity.  相似文献   

4.
The electrocatalytic conversion of CO2 to value-added hydrocarbons is receiving significant attention as a promising way to close the broken carbon-cycle. While most metal catalysts produce C1 species, such as carbon monoxide and formate, the production of various hydrocarbons and alcohols comprising more than two carbons has been achieved using copper (Cu)-based catalysts only. Methods for producing specific C2 reduction outcomes with high selectivity, however, are not available thus far. Herein, the morphological effect of a Cu mesopore electrode on the selective production of C2 products, ethylene or ethane, is presented. Cu mesopore electrodes with precisely controlled pore widths and depths were prepared by using a thermal deposition process on anodized aluminum oxide. With this simple synthesis method, we demonstrated that C2 chemical selectivity can be tuned by systematically altering the morphology. Supported by computational simulations, we proved that nanomorphology can change the local pH and, additionally, retention time of key intermediates by confining the chemicals inside the pores.  相似文献   

5.
The site isolation strategy has been employed in thermal catalytic acetylene semihydrogenation to inhibit overhydrogenation and C−C coupling. However, there is a dearth of analogous investigations in electrocatalytic systems. In this work, density functional theory (DFT) simulations demonstrate that isolated Cu metal sites have higher energy barriers on overhydrogenation and C−C coupling. Following this result, we develop Cu single-atom catalysts highly dispersed on nitrogen-doped carbon matrix, which exhibit high ethylene selectivity (>80 % Faradaic efficiency for ethylene, <1 % Faradaic efficiency for C4, and no ethane) at high concentrations of acetylene. The superior performance observed in the electrocatalytic selective hydrogenation of acetylene can be attributed to the weak adsorption of ethylene intermediates and highly energy barriers on C−C coupling at isolated sites, as confirmed by both DFT calculations and experimental results. This study provides a comprehensive understanding of the isolated sites inhibiting the side reactions of electrocatalytic acetylene semihydrogenation.  相似文献   

6.
Electrochemical reduction of carbon dioxide, if powered by renewable electricity, could serve as a sustainable technology for carbon recycling and energy storage. Among all the products, ethanol is an attractive liquid fuel. However, the maximum faradaic efficiency of ethanol is only ≈10 % on polycrystalline Cu. Here, CuZn bimetallic catalysts were synthesized by in situ electrochemical reduction of ZnO‐shell/CuO‐core bi‐metal‐oxide. Dynamic evolution of catalyst was revealed by STEM‐EDS mapping, showing the migration of Zn atom and blending between Cu and Zn. CuZn bimetallic catalysts showed preference towards ethanol formation, with the ratio of ethanol/ethylene increasing over five times regardless of applied potential. We achieved 41 % faradaic efficiency for C2+ liquids with this catalyst. Transitioning from H‐cell to an electrochemical flow cell, we achieved 48.6 % faradaic efficiency and ?97 mA cm?2 partial current density for C2+ liquids at only ?0.68 V versus reversible hydrogen electrode in 1 m KOH. Operando Raman spectroscopy showed that CO binding on Cu sites was modified by Zn. Free CO and adsorbed *CH3 are believed to combine and form *COCH3 intermediate, which is exclusively reduced to ethanol.  相似文献   

7.
Selective conversion of syngas (CO/H2) into C2+ oxygenates is a highly attractive but challenging target. Herein, we report the direct conversion of syngas into methyl acetate (MA) by relay catalysis. MA can be formed at a lower temperature (ca. 473 K) using Cu‐Zn‐Al oxide/H‐ZSM‐5 and zeolite mordenite (H‐MOR) catalysts separated by quartz wool (denoted as Cu‐Zn‐Al/H‐ZSM‐5|H‐MOR) and also at higher temperatures (603–643 K) without significant deactivation using spinel‐structured ZnAl2O4|H‐MOR. The selectivity of MA and acetic acid (AA) reaches 87 % at a CO conversion of 11 % at 643 K. Dimethyl ether (DME) is the key intermediate and the carbonylation of DME results in MA with high selectivity. We found that the relay catalysis using ZnAl2O4|H‐MOR|ZnAl2O4 gives ethanol as the major product, while ethylene is formed with a layer‐by‐layer ZnAl2O4|H‐MOR|ZnAl2O4|H‐MOR combination. Close proximity between ZnAl2O4 and H‐MOR increases ethylene selectivity to 65 %.  相似文献   

8.
Selective conversion of syngas (CO/H2) into C2+ oxygenates is a highly attractive but challenging target. Herein, we report the direct conversion of syngas into methyl acetate (MA) by relay catalysis. MA can be formed at a lower temperature (ca. 473 K) using Cu‐Zn‐Al oxide/H‐ZSM‐5 and zeolite mordenite (H‐MOR) catalysts separated by quartz wool (denoted as Cu‐Zn‐Al/H‐ZSM‐5|H‐MOR) and also at higher temperatures (603–643 K) without significant deactivation using spinel‐structured ZnAl2O4|H‐MOR. The selectivity of MA and acetic acid (AA) reaches 87 % at a CO conversion of 11 % at 643 K. Dimethyl ether (DME) is the key intermediate and the carbonylation of DME results in MA with high selectivity. We found that the relay catalysis using ZnAl2O4|H‐MOR|ZnAl2O4 gives ethanol as the major product, while ethylene is formed with a layer‐by‐layer ZnAl2O4|H‐MOR|ZnAl2O4|H‐MOR combination. Close proximity between ZnAl2O4 and H‐MOR increases ethylene selectivity to 65 %.  相似文献   

9.
Monodisperse bimetallic Pd–Cu nanoparticles with controllable size and composition were synthesized by a one‐step multiphase ethylene glycol (EG) method. Adjusting the stoichiometric ratio of the Pd and Cu precursors afforded nanoparticles with different compositions, such as Pd85–Cu15, Pd56–Cu44, and Pd39–Cu61. The nanoparticles were separated from the solution mixture by extraction with non‐polar solvents, such as n‐hexane. Monodisperse bimetallic Pd–Cu nanoparticles with narrow size‐distribution were obtained without the need for a size‐selection process. Capping ligands that were bound to the surface of the particles were removed through heat treatment when the as‐prepared nanoparticles were loaded onto a Vulcan XC‐72 carbon support. Supported bimetallic Pd–Cu nanoparticles showed enhanced electrocatalytic activity towards methanol oxidation compared with supported Pd nanoparticles that were fabricated according to the same EG method. For a bimetallic Pd–Cu catalyst that contained 15 % Cu, the activity was even comparable to the state‐of‐the‐art commercially available Pt/C catalysts. A STEM‐HAADF study indicated that the formation of random solid‐solution alloy structures in the bimetallic Pd85–Cu15/C catalysts played a key role in improving the electrochemical activity.  相似文献   

10.
The P,O‐chelated shell higher olefin process (SHOP) type nickel complexes are practical homogeneous catalysts for the industrial preparation of linear low‐carbon α‐olefins from ethylene. We describes that a facile synthetic route enables the modulation of steric hindrance and electronic nature of SHOP‐type nickel complexes. A series of sterically bulky SHOP‐type nickel complexes with variable electronic nature, {[4‐R‐C6H4C(O) = C‐PArPh]NiPh (PPh3); Ar = 2‐[2′,6′‐(OMe)2C6H3]C6H4; R = H ( Ni1 ); R = OMe ( Ni2 ); R = CF3 ( Ni3 )}, were prepared and used as single component catalysts toward ethylene polymerization without using any phosphine scavenger. These nickel catalysts exhibit high thermal stability during ethylene polymerization and result in highly crystalline linear α‐olefinic solid polymer. The catalytic performance of the SHOP‐type nickel complexes was significantly improved by introducing a bulky ortho‐biphenyl group on the phosphorous atom or an electron‐withdrawing trifluoromethyl on the backbone of the ligand, indicating steric and electronic effects play critical roles in SHOP‐type nickel complexes catalyzed ethylene polymerization.  相似文献   

11.
Combining quantum‐mechanical simulations and synthesis tools allows the design of highly efficient CuCo/MoOx catalysts for the selective conversion of synthesis gas (CO+H2) into ethanol and higher alcohols, which are of eminent interest for the production of platform chemicals from non‐petroleum feedstocks. Density functional theory calculations coupled to microkinetic models identify mixed Cu–Co alloy sites, at Co‐enriched surfaces, as ideal for the selective production of long‐chain alcohols. Accordingly, a versatile synthesis route is developed based on metal nanoparticle exsolution from a molybdate precursor compound whose crystalline structure isomorphically accommodates Cu2+ and Co2+ cations in a wide range of compositions. As revealed by energy‐dispersive X‐ray nanospectroscopy and temperature‐resolved X‐ray diffraction, superior mixing of Cu and Co species promotes formation of CuCo alloy nanocrystals after activation, leading to two orders of magnitude higher yield to high alcohols than a benchmark CuCoCr catalyst. Substantiating simulations, the yield to high alcohols is maximized in parallel to the CuCo alloy contribution, for Co‐rich surface compositions, for which Cu phase segregation is prevented.  相似文献   

12.
Separation of acetylene (C2H2) from carbon dioxide (CO2) or ethylene (C2H4) is important in industry but limited by the low capacity and selectivity owing to their similar molecular sizes and physical properties. Herein, we report two novel dodecaborate‐hybrid metal–organic frameworks, MB12H12(dpb)2 (termed as BSF‐3 and BSF‐3‐Co for M=Cu and Co), for highly selective capture of C2H2. The high C2H2 capacity and remarkable C2H2/CO2 selectivity resulted from the unique anionic boron cluster functionality as well as the suitable pore size with cooperative proton‐hydride dihydrogen bonding sites (B?Hδ????Hδ+?C≡C?Hδ+???Hδ??B). This new type of C2H2‐specific functional sites represents a fresh paradigm distinct from those in previous leading materials based on open metal sites, strong electrostatics, or hydrogen bonding.  相似文献   

13.
In situ ball milling of solid catalysts is a promising yet almost unexplored concept for boosting catalytic performance. The continuous preferential oxidation of CO (CO‐PROX) under in situ ball milling of Cu‐based catalysts such as Cu/Cr2O3 is presented. At temperatures as low as −40 °C, considerable activity and more than 95 % selectivity were achieved. A negative apparent activation energy was observed, which is attributed to the mechanically induced generation and subsequent thermal healing of short‐lived surface defects. In situ ball milling at sub‐zero temperatures resulted in an increase of the CO oxidation rate by roughly 4 orders of magnitude. This drastic and highly selective enhancement of CO oxidation showcases the potential of in situ ball milling in heterogeneous catalysis.  相似文献   

14.
This study explores the kinetics, mechanism, and active sites of the CO2 electroreduction reaction (CO2RR) to syngas and hydrocarbons on a class of functionalized solid carbon‐based catalysts. Commercial carbon blacks were functionalized with nitrogen and Fe and/or Mn ions using pyrolysis and acid leaching. The resulting solid powder catalysts were found to be active and highly CO selective electrocatalysts in the electroreduction of CO2 to CO/H2 mixtures outperforming a low‐area polycrystalline gold benchmark. Unspecific with respect to the nature of the metal, CO production is believed to occur on nitrogen functionalities in competition with hydrogen evolution. Evidence is provided that sufficiently strong interaction between CO and the metal enables the protonation of CO and the formation of hydrocarbons. Our results highlight a promising new class of low‐cost, abundant electrocatalysts for synthetic fuel production from CO2.  相似文献   

15.
Nitrogenase cofactors can be extracted into an organic solvent to catalyze the reduction of cyanide (CN?), carbon monoxide (CO), and carbon dioxide (CO2) without using adenosine triphosphate (ATP), when samarium(II) iodide (SmI2) and 2,6‐lutidinium triflate (Lut‐H) are employed as a reductant and a proton source, respectively. Driven by SmI2, the cofactors catalytically reduce CN? or CO to C1–C4 hydrocarbons, and CO2 to CO and C1–C3 hydrocarbons. The C? C coupling from CO2 indicates a unique Fischer–Tropsch‐like reaction with an atypical carbonaceous substrate, whereas the catalytic turnover of CN?, CO, and CO2 by isolated cofactors suggests the possibility to develop nitrogenase‐based electrocatalysts for the production of hydrocarbons from these carbon‐containing compounds.  相似文献   

16.
Nitrogenase cofactors can be extracted into an organic solvent to catalyze the reduction of cyanide (CN), carbon monoxide (CO), and carbon dioxide (CO2) without using adenosine triphosphate (ATP), when samarium(II) iodide (SmI2) and 2,6‐lutidinium triflate (Lut‐H) are employed as a reductant and a proton source, respectively. Driven by SmI2, the cofactors catalytically reduce CN or CO to C1–C4 hydrocarbons, and CO2 to CO and C1–C3 hydrocarbons. The C C coupling from CO2 indicates a unique Fischer–Tropsch‐like reaction with an atypical carbonaceous substrate, whereas the catalytic turnover of CN, CO, and CO2 by isolated cofactors suggests the possibility to develop nitrogenase‐based electrocatalysts for the production of hydrocarbons from these carbon‐containing compounds.  相似文献   

17.
The Fischer–Tropsch process, or the catalytic hydrogenation of carbon monoxide (CO), produces long chain hydrocarbons and offers an alternative to the use of crude oil for chemical feedstocks. The observed size dependence of cobalt (Co) catalysts for the Fischer–Tropsch reaction was studied with colloidally prepared Co nanoparticles and a chemical transient kinetics reactor capable of measurements under non‐steady‐state conditions. Co nanoparticles of 4.3 nm and 9.5 nm diameters were synthesized and tested under atmospheric pressure conditions and H2/CO=2. Large differences in carbon coverage (ΘC) were observed for the two catalysts: the 4.3 nm Co catalyst has a ΘC less than one while the 9.5 nm Co catalyst supports a ΘC greater than two. The monomer units present on the surface during reaction are identified as single carbon species for both sizes of Co nanoparticles, and the major CO dissociation site is identified as the B5‐B geometry. The difference in activity of Co nanoparticles was found to be a result of the structure sensitivity caused by the loss of these specific types of sites at smaller nanoparticle sizes.  相似文献   

18.
Cu catalysts are well-known for their good performance in CO2 conversion. Compared to CO and CH4 production, C2 products have higher volumetric energy densities and are more valuable in industrial applications. In this work, we screened the catalytic ability of C2 production on several 1D Cu atomic chain structures and find that Cu edge-decorated zigzag graphene nanoribbons (Cu−ZGNR) are capable of catalyzing CO2 conversion to ethanol, and CH3CH2OH is the main C2 product with a maximum free energy change of 0.60 eV. The planar tetracoordinate carbon structures in Cu-ZGNR provide unique chemical bonding features for catalytic reaction on the Cu atoms. Detailed mechanism analyses with transition states search show that CO* dimerization is favored against CHO* formation in the reaction. By adjusting the CO* coverage, the selectivity of the C2 product can be enhanced owing to less pronounced steric effects for COCHO*, which is feasible under experimental conditions. This study expands the catalyst family for C2 products from CO2 based on nano carbon structures with new features.  相似文献   

19.
The dynamics of carbon monoxide on Cu surfaces was investigated during CO reduction, providing insight into the mechanism leading to the formation of hydrogen, methane, and ethylene, the three key products in the electrochemical reduction of CO2. Reaction order experiments were conducted at low temperature in an ethanol medium affording high solubility and surface‐affinity for carbon monoxide. Surprisingly, the methane production rate is suppressed by increasing the pressure of CO, whereas ethylene production remains largely unaffected. The data show that CH4 and H2 production are linked through a common H intermediate and that methane is formed through reactions among adsorbed H and CO, which are in direct competition with each other for surface sites. The data exclude the participation of solution species in rate‐limiting steps, highlighting the importance of increasing surface recombination rates for efficient fuel synthesis.  相似文献   

20.
It is generally believed that CO2 electroreduction to multi‐carbon products such as ethanol or ethylene may be catalyzed with significant yield only on metallic copper surfaces, implying large ensembles of copper atoms. Here, we report on an inexpensive Cu‐N‐C material prepared via a simple pyrolytic route that exclusively feature single copper atoms with a CuN4 coordination environment, atomically dispersed in a nitrogen‐doped conductive carbon matrix. This material achieves aqueous CO2 electroreduction to ethanol at a Faradaic yield of 55 % under optimized conditions (electrolyte: 0.1 m CsHCO3, potential: ?1.2 V vs. RHE and gas‐phase recycling set up), as well as CO electroreduction to C2‐products (ethanol and ethylene) with a Faradaic yield of 80 %. During electrolysis the isolated sites transiently convert into metallic copper nanoparticles, as shown by operando XAS analysis, which are likely to be the catalytically active species. Remarkably, this process is reversible and the initial material is recovered intact after electrolysis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号