首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The need of carbon sources for the chemical industry, alternative to fossil sources, has pointed to CO2 as a possible feedstock. While CO2 electroreduction (CO2R) allows production of interesting organic compounds, it suffers from large carbon losses, mainly due to carbonate formation. This is why, quite recently, tandem CO2R, a two-step process, with first CO2R to CO using a solid oxide electrolysis cell followed by CO electroreduction (COR), has been considered, since no carbon is lost as carbonate in either step. Here we report a novel copper-based catalyst, silver-doped copper nitride, with record selectivity for formation of propanol (Faradaic efficiency: 45 %), an industrially relevant compound, from CO electroreduction in gas-fed flow cells. Selective propanol formation occurs at metallic copper atoms derived from copper nitride and is promoted by silver doping as shown experimentally and computationally. In addition, the selectivity for C2+ liquid products (Faradaic efficiency: 80 %) is among the highest reported so far. These findings open new perspectives regarding the design of catalysts for production of C3 compounds from CO2.  相似文献   

2.
Electrochemical reduction of CO2 into value‐added product is an interesting area. MoP nanoparticles supported on porous carbon were synthesized using metal–organic frameworks as the carbon precursor, and initial work on CO2 electroreduction using the MoP‐based catalyst were carried out. It was discovered that MoP nanoparticles supported on In‐doped porous carbon had outstanding performance for CO2 reduction to formic acid. The Faradaic efficiency and current density could reach 96.5 % and 43.8 mA cm?2, respectively, when using ionic liquid 1‐butyl‐3‐methylimidazolium hexafluorophosphate as the supporting electrolyte. The current density is higher than those reported up to date with very high Faradaic efficiency. The MoP nanoparticles and the doped In2O3 cooperated very well in catalyzing the CO2 electroreduction.  相似文献   

3.
Bridging homogeneous molecular systems with heterogeneous catalysts is a promising approach for the development of new electrodes, combining the advantages of both approaches. In the context of CO2 electroreduction, molecular enhancement of planar copper electrodes has enabled promising advancement towards high Faradaic efficiencies for multicarbon products. Besides, nanostructured copper electrodes have also demonstrated enhanced performance at comparatively low overpotentials. Herein, we report a novel and convenient method for nanostructuring copper electrodes using N,N′‐ethylene‐phenanthrolinium dibromide as molecular additive. Selectivities up to 70 % for C≥2 products are observed for more than 40 h without significant change in the surface morphology. Mechanistic studies reveal several roles for the organic additive, including: the formation of cube‐like nanostructures by corrosion of the copper surface, the stabilization of these nanostructures during electrocatalysis by formation of a protective organic layer, and the promotion of C≥2 products.  相似文献   

4.
CO2 electroreduction is a promising technique for satisfying both renewable energy storage and a negative carbon cycle. However, it remains a challenge to convert CO2 into C2 products with high efficiency and selectivity. Herein, we report a nitrogen‐doped ordered cylindrical mesoporous carbon as a robust metal‐free catalyst for CO2 electroreduction, enabling the efficient production of ethanol with nearly 100 % selectivity and high faradaic efficiency of 77 % at −0.56 V versus the reversible hydrogen electrode. Experiments and density functional theory calculations demonstrate that the synergetic effect of the nitrogen heteroatoms and the cylindrical channel configurations facilitate the dimerization of key CO* intermediates and the subsequent proton–electron transfers, resulting in superior electrocatalytic performance for synthesizing ethanol from CO2.  相似文献   

5.
Electrocatalytic carbon dioxide reduction holds great promise for reducing the atmospheric CO2 level and alleviating the energy crisis. High‐performance electrocatalysts are often required in order to lower the high overpotential and expedite the sluggish reaction kinetics of CO2 electroreduction. Copper is a promising candidate metal. However, it usually suffers from the issues of poor stability and low product selectivity. In this work, bimetallic Cu‐Bi is obtained by reducing the microspherical copper bismuthate (CuBi2O4) for selectively catalyzing the CO2 reduction to formate (HCOO). The bimetallic Cu‐Bi electrocatalyst exhibits high activity and selectivity with the Faradic efficiency over 90% in a wide potential window. A maximum Faradaic efficiency of ~95% is obtained at –0.93 V versus reversible hydrogen electrode. Furthermore, the catalyst shows high stability over 6 h with Faradaic efficiency of ~95%. This study provides an important clue in designing new functional materials for CO2 electroreduction with high activity and selectivity.  相似文献   

6.
Efficient, stable catalysts with high selectivity for a single product are essential if electroreduction of CO2 is to become a viable route to the synthesis of industrial feedstocks and fuels. A plasma oxidation pre‐treatment of silver foil enhances the number of low‐coordinated catalytically active sites, which dramatically lowers the overpotential and increases the activity of CO2 electroreduction to CO. At −0.6 V versus RHE more than 90 % Faradaic efficiency towards CO was achieved on a pre‐oxidized silver foil. While transmission electron microscopy (TEM) and operando X‐ray absorption spectroscopy showed that oxygen species can survive in the bulk of the catalyst during the reaction, quasi in situ X‐ray photoelectron spectroscopy showed that the surface is metallic under reaction conditions. DFT calculations reveal that the defect‐rich surface of the plasma‐oxidized silver foils in the presence of local electric fields drastically decrease the overpotential of CO2 electroreduction.  相似文献   

7.
Production of multicarbon products (C2+) from CO2 electroreduction reaction (CO2RR) is highly desirable for storing renewable energy and reducing carbon emission. The electrochemical synthesis of CO2RR catalysts that are highly selective for C2+ products via electrolyte‐driven nanostructuring is presented. Nanostructured Cu catalysts synthesized in the presence of specific anions selectively convert CO2 into ethylene and multicarbon alcohols in aqueous 0.1 m KHCO3 solution, with the iodine‐modified catalyst displaying the highest Faradaic efficiency of 80 % and a partial geometric current density of ca. 31.2 mA cm?2 for C2+ products at ?0.9 V vs. RHE. Operando X‐ray absorption spectroscopy and quasi in situ X‐ray photoelectron spectroscopy measurements revealed that the high C2+ selectivity of these nanostructured Cu catalysts can be attributed to the highly roughened surface morphology induced by the synthesis, presence of subsurface oxygen and Cu+ species, and the adsorbed halides.  相似文献   

8.
The electrocatalytic carbon dioxide (CO2) reduction is a promising approach for converting this greenhouse gas into value-added chemicals, while the capability of producing products with longer carbon chains (Cn>3) is limited. Herein, we demonstrate the Br-assisted electrocatalytic oxidation of ethylene (C2H4), a major CO2 electroreduction product, into 2-bromoethanol by electro-generated bromine on metal phthalocyanine catalysts. Due to the preferential formation of Br2 over *O or Cl2 to activate the C=C bond, a high partial current density of producing 2-bromoethanol (46.6 mA⋅cm−2) was obtained with 87.2 % Faradaic efficiency. Further coupling with the electrocatalytic nitrite reduction to ammonia at the cathode allowed the production of triethanolamine with six carbon atoms. Moreover, by coupling a CO2 electrolysis cell for in situ C2H4 generation and a C2H4 oxidation/nitrite reduction cell, the capability of upgrading of CO2 and nitrite into triethanolamine was demonstrated.  相似文献   

9.
Nanoporous zinc oxide (ZnO) is prepared by a hydrothermal method followed by thermal decomposition for electrocatalytic reduction of CO2. In situ X-ray absorption spectroscopy results indicate that ZnO is reduced to Zn under the electrolysis conditions for catalyzing CO2 electroreduction. The reduced nanoporous ZnO exhibits obviously higher CO Faradaic efficiency and current density than commercial Zn foil with a maximum CO Faradaic efficiency of 92.0%, suggesting that the nanoporous structure facilitates electrocatalytic reduction of CO2 over reduced nanoporous ZnO, probably due to increased surface area and more coordination unsaturated surface atoms.  相似文献   

10.
The catalytic, electrocatalytic, or photocatalytic conversion of CO2 into useful chemicals in high yield for industrial applications has so far proven difficult. Herein, we present our work on the electrochemical reduction of CO2 in seawater using a boron‐doped diamond (BDD) electrode under ambient conditions to produce formaldehyde. This method overcomes the usual limitation of the low yield of higher‐order products, and also reduces the generation of H2. In comparison with other electrode materials, BDD electrodes have a wide potential window and high electrochemical stability, and, moreover, exhibit very high Faradaic efficiency (74 %) for the production of formaldehyde, using either methanol, aqueous NaCl, or seawater as the electrolyte. The high Faradaic efficiency is attributed to the sp3‐bonded carbon of the BDD. Our results have wide ranging implications for the efficient and cost‐effective conversion of CO2.  相似文献   

11.
The electrochemical CO2 reduction (ECDRR), as a key reaction in artificial photosynthesis to implement renewable energy conversion/storage, has been inhibited by the low efficiency and high costs of the electrocatalysts. Herein, we synthesize a fluorine‐doped carbon (FC) catalyst by pyrolyzing commercial BP 2000 with a fluorine source, enabling a highly selective CO2‐to‐CO conversion with a maximum Faradaic efficiency of 90 % at a low overpotential of 510 mV and a small Tafel slope of 81 mV dec?1, outcompeting current metal‐free catalysts. Moreover, the higher partial current density of CO and lower partial current density of H2 on FC relative to pristine carbon suggest an enhanced inherent activity towards ECDRR as well as a suppressed hydrogen evolution by fluorine doping. Fluorine doping activates the neighbor carbon atoms and facilitates the stabilization of the key intermediate COOH* on the fluorine‐doped carbon material, which are also blocked for competing hydrogen evolution, resulting in superior CO2‐to‐CO conversion.  相似文献   

12.
Efficient electroreduction of carbon dioxide (CO2) to ethanol is of great importance, but remains a challenge because it involves the transfer of multiple proton–electron pairs and carbon–carbon coupling. Herein, we report a CoO-anchored N-doped carbon material composed of mesoporous carbon (MC) and carbon nanotubes (CNT) as a catalyst for CO2 electroreduction. The faradaic efficiencies of ethanol and current density reached 60.1% and 5.1 mA cm−2, respectively. Moreover, the selectivity for ethanol products was extremely high among the products produced from CO2. A proposed mechanism is discussed in which the MC–CNT/Co catalyst provides a relay catalytic platform, where CoO catalyzes the formation of CO* intermediates which spill over to MC–CNT for carbon–carbon coupling to form ethanol. The high selectivity for ethanol is attributed mainly to the highly selective carbon–carbon coupling active sites on MC–CNT.

The relay catalytic platform is very efficient and selective for CO2 electroreduction to ethanol.  相似文献   

13.
The electroreduction of carbon dioxide using renewable electricity is an appealing strategy for the sustainable synthesis of chemicals and fuels. Extensive research has focused on the production of ethylene, ethanol and n-propanol, but more complex C4 molecules have been scarcely reported. Herein, we report the first direct electroreduction of CO2 to 1-butanol in alkaline electrolyte on Cu gas diffusion electrodes (Faradaic efficiency=0.056 %, j1-Butanol=−0.080 mA cm−2 at −0.48 V vs. RHE) and elucidate its formation mechanism. Electrolysis of possible molecular intermediates, coupled with density functional theory, led us to propose that CO2 first electroreduces to acetaldehyde-a key C2 intermediate to 1-butanol. Acetaldehyde then undergoes a base-catalyzed aldol condensation to give crotonaldehyde via electrochemical promotion by the catalyst surface. Crotonaldehyde is subsequently electroreduced to butanal, and then to 1-butanol. In a broad context, our results point to the relevance of coupling chemical and electrochemical processes for the synthesis of higher molecular weight products from CO2.  相似文献   

14.
Electrocatalytic conversion of carbon dioxide (CO2) has recently received considerable attention as one of the most feasible CO2 utilization techniques. In particular, copper and copper‐derived catalysts have exhibited the ability to produce a number of organic molecules from CO2. Herein, we report a chloride (Cl)‐induced bi‐phasic cuprous oxide (Cu2O) and metallic copper (Cu) electrode (Cu2OCl) as an efficient catalyst for the formation of high‐carbon organic molecules by CO2 conversion, and identify the origin of electroselectivity toward the formation of high‐carbon organic compounds. The Cu2OCl electrocatalyst results in the preferential formation of multi‐carbon fuels, including n‐propanol and n‐butane C3–C4 compounds. We propose that the remarkable electrocatalytic conversion behavior is due to the favorable affinity between the reaction intermediates and the catalytic surface.  相似文献   

15.
Using the rotating ring (platinum)—disk (glassy carbon) electrode methodology, electrocatalytic activity of the microstructured copper centers (imbedded within the polyvinylpyrrolidone polymer matrix and deposited onto the glassy carbon disk electrode) has been monitored during electroreduction of carbon dioxide both in acid (HClO4) and neutral (KHCO3) media as well as diagnosed (at Pt ring) with respect to formation of the electroactive products. Combination of the stripping-type and rotating ring-disk voltammetric approaches has led to the observation that, regardless the overlapping reduction phenomena, the reduction of carbon dioxide at copper catalyst is, indeed, operative and coexists with hydrogen evolution reaction. Using the fundamental concepts of surface electrochemistry and analytical voltammetry, the reaction products (thrown onto the platinum ring electrode) could be considered and identified as adsorbates (on Pt) under conditions of the stripping-type oxidation experiment. Judging from the potentials at which the stripping voltammetric peaks appear in neutral CO2-saturated KHCO3 (pH 6.8), formic acid or carbon monoxide seem to be the most likely reaction products or intermediates. The proposed methodology also permits correlation between the CO2 electroreduction products and the potentials applied to the disk electrode. By performing the comparative stripping-type voltammetric experiments in acid medium (HClO4 at pH 1) with the adsorbates of formic acid, ethanol and acetaldehyde (on Pt ring), it can be rationalized that, although C2H5OH or CH3CHO are very likely CO2-reduction electroactive products, formation of some HCOOH, CH3OH or even CO cannot be excluded.  相似文献   

16.
The design of active, selective, and stable CO2 reduction electrocatalysts is still challenging. A series of atomically dispersed Co catalysts with different nitrogen coordination numbers were prepared and their CO2 electroreduction catalytic performance was explored. The best catalyst, atomically dispersed Co with two‐coordinate nitrogen atoms, achieves both high selectivity and superior activity with 94 % CO formation Faradaic efficiency and a current density of 18.1 mA cm?2 at an overpotential of 520 mV. The CO formation turnover frequency reaches a record value of 18 200 h?1, surpassing most reported metal‐based catalysts under comparable conditions. Our experimental and theoretical results demonstrate that lower a coordination number facilitates activation of CO2 to the CO2.? intermediate and hence enhances CO2 electroreduction activity.  相似文献   

17.
The electrocatalytic CO2 reduction reaction (CO2RR) can dynamise the carbon cycle by lowering anthropogenic CO2 emissions and sustainably producing valuable fuels and chemical feedstocks. Methanol is arguably the most desirable C1 product of CO2RR, although it typically forms in negligible amounts. In our search for efficient methanol‐producing CO2RR catalysts, we have engineered Ag‐Zn catalysts by pulse‐depositing Zn dendrites onto Ag foams (PD‐Zn/Ag foam). By themselves, Zn and Ag cannot effectively reduce CO2 to CH3OH, while their alloys produce CH3OH with Faradaic efficiencies of approximately 1 %. Interestingly, with nanostructuring PD‐Zn/Ag foam reduces CO2 to CH3OH with Faradaic efficiency and current density values reaching as high as 10.5 % and ?2.7 mA cm?2, respectively. Control experiments and DFT calculations pinpoint strained undercoordinated Zn atoms as the active sites for CO2RR to CH3OH in a reaction pathway mediated by adsorbed CO and formaldehyde. Surprisingly, the stability of the *CHO intermediate does not influence the activity.  相似文献   

18.
Electrolyzers combining CO2 reduction (CO2R) with organic substrate oxidation can produce fuel and chemical feedstocks with a relatively low energy requirement when compared to systems that source electrons from water oxidation. Here, we report an anodic hybrid assembly based on a (2,2,6,6‐tetramethylpiperidin‐1‐yl)oxyl (TEMPO) electrocatalyst modified with a silatrane‐anchor ( STEMPO ), which is covalently immobilized on a mesoporous indium tin oxide (mesoITO) scaffold for efficient alcohol oxidation (AlcOx). This molecular anode was subsequently combined with a cathode consisting of a polymeric cobalt phthalocyanine on carbon nanotubes to construct a hybrid, precious‐metal‐free coupled AlcOx–CO2R electrolyzer. After three‐hour electrolysis, glycerol is selectively oxidized to glyceraldehyde with a turnover number (TON) of ≈1000 and Faradaic efficiency (FE) of 83 %. The cathode generated a stoichiometric amount of syngas with a CO:H2 ratio of 1.25±0.25 and an overall cobalt‐based TON of 894 with a FE of 82 %. This prototype device inspires the design and implementation of nonconventional strategies for coupling CO2R to less energy demanding, and value‐added, oxidative chemistry.  相似文献   

19.
Electrochemical conversion of carbon dioxide (CO2) to value‐added products is a possible way to decrease the problems resulting from CO2 emission. Thanks to the eminent conductivity and proper adsorption to intermediates, Pd has become a promising candidate for CO2 electroreduction (CO2ER). However, Pd‐based nanocatalysts generally need a large overpotential. Herein we describe that ultrathin Pd nanosheets effectively reduce the onset potential for CO by exposing abundant atoms with comparatively low generalized coordination number. Hexagonal Pd nanosheets with 5 atomic thickness and 5.1 nm edge length reached CO faradaic efficiency of 94 % at ?0.5 V, without any decay after a stability test of 8 h. It appears to be the most efficient among all of Pd‐based catalysts toward CO2ER. Uniform hexagonal morphology made it reasonable to build models and take DFT calculations. The enhanced activity originates from mainly edge sites on palladium nanosheets.  相似文献   

20.
Gold nanoparticles in metallic or plasmonic state have been widely used to catalyze homogeneous and heterogeneous reactions. However, the catalytic behavior of gold catalysts in non‐metallic or excitonic state remain elusive. Atomically precise Aun clusters (n=number of gold atoms) bridge the gap between non‐metallic and metallic catalysts and offer new opportunities for unveiling the hidden properties of gold catalysts in the metallic, transition regime, and non‐metallic states. Here, we report the controllable conversion of CO2 over three non‐metallic Aun clusters, including Au9, Au11, and Au36, towards different target products: methane produced on Au9, ethanol on Au11, and formic acid on Au36. Structural information encoded in the non‐metallic clusters permits a precise correlation of atomic structure with catalytic properties and hence, provides molecular‐level insight into distinct reaction channels of CO2 hydrogenation over the three non‐metallic Au catalysts.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号