首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
On the basis of the calculations and analyses of the intrapair and interpair correlation energy of KX (X = OH, NC) molecules and the results of the transferability of both the innermost intrapair correlation energy and the inner core effect of K and X in KX molecules, we defined and calculated the Kδ+ and Xδ-correlation contributions to the total correlation energy of KX molecules. With the comparison of the pair correlation energy of K+, X- and KX systems, we present a simple estimation method to estimate the electron correlation energy of strong ionic compound by summarizing the correlation energy of its constituent ion and ionic group. By using this simple method, the reasonable estimation results of the correlation energy of (KOH)2 and (KNC)2 have been obtained at mp2/6-311++G(d) level with Gaussian98 program, and the deviations are very small. Applying the scheme of “Separate Large System into Smaller Ones” to the calculation of electron correlation energy of large ionic compounds, it can not only save lot of computation work but also reach the chemical accuracy.  相似文献   

2.
On the basis of the calculations and analyses of the intrapair and interpair correlation energy of KX (X = OH, NC) molecules and the results of the transferability of both the innermost intrapair correlation energy and the inner core effect of K and X in KX molecules, we defined and calculated the Kδ- and Xδ-correlation contributions to the total correlation energy of KX molecules. With the comparison of the pair correlation energy of K+, X- and KX systems, we present a simple estimation method to estimate the electron correlation energy of strong ionic compound by summarizing the correlation energy of its constituent ion and ionic group. By using this simple method, the reasonable estimation results of the correlation energy of (KOH)2 and (KNC)2 have been obtained at mp2/6-311++G(d) level with Gaussian98 program, and the deviations are very small. Applying the scheme of "Separate Large System into Smaller Ones" to the calculation of electron correlation energy of large ionic compounds, it can not only  相似文献   

3.
禚淑萍  韦吉崇  居冠之 《中国化学》2005,23(9):1173-1176
The calculation results of electron correlation energies of KF and (KF)2 were reported. The transferability of 1s^2 K , 1s^2 F and the inner core correlation effects of K and F in both K, K^+, KF and F, F^-, KF systems were investigated respectively. The correlation energy contributions of K and F component to KF system were calculated. By applying the simple estimation scheme to the calculation of the correlation energy of the strong ionic compound KF and (KF)2, it was shown that such a powerful scheme could not only reach the chemical accuracy but also need little computational work.  相似文献   

4.
In the solid state complexes of the type MiL2X2 (L = N-substituted β-aminoethyl-pyridine; X = Cl, Br, J) have a cis-octahedral (X = Cl, Br) or a distorted trigonal bipyramidal structure (X = J). In solutions in acetone a partial dissociation occurs with the formation of NiLX2, L, NiL2X+, and X?. Using a spectrophotometric method stability constants K2S of the complexes NiL2X2 are determined. A correlation exists between log K2s and the pK- values of the quarternary ammonium ions derived from the ligands L. Sterical factors cause the exeptional position of the chelates of β-methylaminoethylpyridine-(2).  相似文献   

5.
Molten potassium tetrachlorogallate and potassium tetraiodogallate were studied in terms of halogenoacidity, based on X? ion-exchange. Titration of KX solution with GaX3 were achieved and characterized by the shift of cathodic voltammetric curves. Autodissociation constants Ki,X/mol2 kg?1 were determined: ?log Ki,Cl=4.25±0.05 and ?log Ki,I=2.6±0.05, as well as the solubility values of KX: 0.41±0.02 and 0.80±0.02 mol kg?1 for KCl and KI respectively.  相似文献   

6.
Potassium halide adducts of the form K2X+ (X = F, CI, Br, and I) desorbed from neutral salts by high power, pulsed, infrared laser radiation are detected in abundance by Fourier transform-ion cyclotron resonance (FT-ICR) mass spectrometry. FT-ICR detection of the K2X+ adduct is favored at increased laser power densities (> 108 W/cm2) and at trapping potentials below 3 V, independent of X. In contrast, detection of K+ is promoted at laser power densities below 108 W/cm2 or at higher trapping potentials, with a threshold for trapping that is strongly dependent on X. When laser desorption/ionization (LDI)/FT-ICR is performed on 1:1 mixtures of KX and organic molecules, ejection pulses applied continuously at the cyclotron resonance frequency of K2X+ inhibit formation of the cation-attached product, [M + K]+. Conversely, resonance ejection of K+ enhances [M + K]+, apparently by reducing the matrix ion population trapped in the cell. In evaluating higher molecular weight adducts, only K3F 2 + formed in abundance by laser desorption of KF is found through double resonance experiments to contribute significantly to formation of [M + K]+. Finally, among the potassium halides, KI generates the highest ratio of detected K2X+ to K+ at low trapping potentials and is therefore best suited for cation-transfer reactions in infrared LDI/FT-ICR experiments performed at power densities in the 108 W/cm2 range.  相似文献   

7.
The ionic dissociation of salts was examined with a theoretical study of KX (X=F,Cl,Br,I) hydrated by up to six water molecules KX(H2O)n (n=1-6). Calculations were done using the density functional theory and second order M?ller-Plesset (MP2) perturbational theory. To provide more conclusive results, single point energy calculations using the coupled cluster theory with single, double, and perturbative triple excitations were performed on the MP2 optimized geometries. The dissociation feature of the salts was examined in terms of K-X bond lengths and K-X stretch frequencies. In general, the successive incorporation of water molecules to the cluster lengthens the K-X distance, and consequently the corresponding frequency decreases. Near 0 K, the KX salt ion pairs can be partly separated by more than five water molecules. The pentahydrated KX salt is partly dissociated, though these partly dissociated structures are almost isoenergetic to the undissociated ones for KFKCl. For the hexahydrated complexes, KF is undissociated, KClKBr is partly dissociated, and KI is dissociated (though this dissociated structure is nearly isoenergetic to a partly dissociated one). On the other hand, at room temperature, the penta- and hexahydrated undissociated structures which have less hydrogen bonds are likely to be more stable than the partly dissociated ones because of the entropy effect. Therefore, the dissociation at room temperature could take place for higher clusters than the hexahydrated ones.  相似文献   

8.
Preparation and Characterization of [Pt(mal)2]2? and trans-[Pt(mal)2X2]2? (X = Cl, Br, I, SCN) By twofold treatment of K2[PtCl4] with potassium hydrogen malonate in a queous solution the yellow K2[Pt(mal)2] · H2O is obtained. After extraction with tetrabutylammonium ions into dichloromethane by oxidative addition at ?90°C the PtIV complexes [Pt(mal)2X2]2?, X = Cl, Br, I, SCN, are formed. The SCN ligands are coordinated to Pt via S. The IR and Raman spectra are discussed and assigned.  相似文献   

9.
Adiabatic potential energy, spectroscopic constants, dipole moments, and vibrational levels have been computed for the lowest electronic states of alkali dimers LiX and NaX (X = Rb, Cs). Calculations have been carried with the use of an ab initio approach with core‐potential potentials and full‐valence configuration. Thus, these systems are treated as two‐electron systems. A good agreement is obtained for some lowest states of the molecules studied with available theoretical works. The existence of numerous avoided crossings between electronic states for 1Σ symmetries is related to the charge‐transfer process in each molecule between its two ionic systems (Li+X?, Li?X+) and (Na+X?, Na?X+). © 2011 Wiley Periodicals, Inc. Int J Quantum Chem, 2011  相似文献   

10.
Ab initio quantum chemical calculations have been performed on X2Cl? and X2Cl (X = C, Si, Ge) clusters. The geometrical structures, vibrational frequencies, electronic properties and dissociation energies are investigated at the Hartree–Fock (HF), Møller–Plesset second‐ and fourth‐order (MP2, MP4), CCSD(T) level with the 6‐311+G(d) basis set. The X2Cl (X = C, Si, Ge) and X2Cl? (X = Si, Ge) take a bent shape obtained at the ground state, while C2Cl? has a linear structure. The impact on internal electron transfer between the X2Cl and the corresponding anional clusters is studied. The three different types of electron affinities (EAs) at the CCSD(T) are reported. The most reliable adiabatic electronic affinities, obtained at the CCSD(T)/cc‐pvqz level of theory, are predicted to be 3.30, 2.62, and 1.98 eV for C2Cl, Si2Cl, and Ge2Cl, respectively. The calculated EAs of C2Cl and Ge2Cl are in good agreement with theoretical results reported. The correlation effects and basis sets effects on the geometrical structures and dissociation energies are discussed. © 2006 Wiley Periodicals, Inc. Int J Quantum Chem, 2007  相似文献   

11.
The 195Pt and 13C chemical shifts (δPt and δc) are reported for platinum(II), platinum(IV) and class II mixed-valence complexes, with general formula [PtL4]X2, cis- and trans-PtL2X2, PtL2X4 and Pt2L4X6 (where L may be thiourea, 2-imidazolidine-thione, tetrahydro 2-pyrimidinethione, thiocaprolactam, pyridine-2-thione and tetramethylthiourea, and X may be Cl or Br). The 195Pt chemical shifts can be understood in view of 13C data in terms of variations of electronegativities and σ-donor abilities of ligands attached to platinum.  相似文献   

12.
Acetylene‐linked reactive intermediates of (nitrenoethynyl)‐X‐methylenes, (nitrenoethynyl)‐X‐silylenes, and (nitrenoethynyl)‐X‐germylenes are almost experimentally unreachable (X–M–C≡C–N; X=H ( 1 ), CN ( 2 ), OH ( 3 ), NH2 ( 4 ), NO2 ( 5 ), and CHO ( 6 ); M=C, Si, and Ge). The effects of the electron‐donating and electron withdrawing groups were compared and contrasted at seven levels of theory. All singlet species as ground states with one local open‐shell singlet carbene subunit (π1π1) and another local open‐shell singlet nitrene subunit (π1π1) were found to be more stable than their corresponding triplets including one local open‐shell singlet carbene (δ1π1) (or one local closed‐shell singlet carbene [δ2π0]) and another local triplet nitrene subunit (π1π1) with 45.94–77.996 kcal/mol singlet–triplet energy gap (ΔEs‐t). Their relative silylenes and germylenes made reduction of ΔEs‐t, so the triplet ground states were found for species 3 Si , 4 Si , 5 Si , 2 Ge , 3 Ge , 4 Ge , and 5 Ge . All the singlet silylenes/germylenes formed by one local closed‐shell singlet silylenes/germylenes (δ2π0) and one local closed‐shell singlet nitrene subunit (π2π0). Also, one local closed‐shell singlet silylene/germylene subunit (δ2π0) and one local triplet nitrene subunit (π1π1) were observed for triplet silylenes/germylenes. The singlet and triplet species 3 Si , 4 Si , 3 Ge , and 4 Ge , due to their electrophilic (Si4/Ge4) and nucleophilic (X5) centers, could be identified as intermediates in chemical reactions.  相似文献   

13.
According to the X-ray diffraction data, the crystal and molecular structure of tris(2-hydroxyethyl) ammonium fluoride (F?N+H(CH2CH2OH)3, fluoroprotatrane, substantially differs from other halo protatranes X?N+H(CH2CH2OH)3 (X = Cl, Br, and I). At X = F, to the endo-molecular LP of the nitrogen atom the HF molecule having the minimum ionic radius in a series of X? anions is bonded. The geometry of fluoroprotatrane and the cation packing in the crystal are analyzed.  相似文献   

14.
The reactivity of the C6F5X (X=F, Cl, Br, I) molecules following low energy (0–15 eV) electron attachment is studied in the gas phase under single collision conditions, free molecular clusters and condensed molecules by means of crossed beams and surface experiments. All four molecules exhibit a very prominent resonance for low energy electron attachment (<1 eV, attachment cross section >10−14 cm2). Under collision free conditions thermal electron capture generates long lived molecular parent anions C6F5X−*. Along the line Cl, Br, I dissociation into X+C6F5 and X+C6F5-increasingly competes until for X=1 only chemical fragmentation is observed on the mass spectrometric time scale. In free molecular clusters chemical fragmentation is quantitatively quenched at low energies in favour of associative attachment yielding undissociated, relaxed ions (C6F5X) n,n≥1. A further dissociative resonance at 6.5 eV in C6F5Cl is considerably enhanched in clusters. If these molecules are finally condensed on a solid surface, one observes a prominent Cl desorption resonance at 6.5 eV. While the quantitative quenching of the chemical reactivity at low energies is due to the additional possibilities of energy dissipation under aggregation, the enhanched reactivity at 6.5 eV is interpreted by the conversion of a core excited open channel resonance in single molecules into a closed channel (Feshbach) resonance when it is coupled to environmental molecules.  相似文献   

15.
DFT calculations using MPWB1K method with COSMO continuum solvation model have been carried out to quantify the trans influence of various X ligands (EX) in [PtIICl3X]n− complexes as well as the mutual trans influence of two X and Y ligands (EXY) in [PtIICl2XY]n− complexes. A quantitative structure energy relationship (QSER) is derived for predicting the EXY using EX and EY and this relationship showed a strong similarity to a QSER derived for predicting EXY of [PdIICl2XY]n− complexes. Quantification of the contributions of EX and EXY to the bond dissociation energy of the ligand X (BDEX) in complexes of the type [MIIX(Y)X′(Y′)] (M = Pd, Pt) is also achieved. The BDEX of any ligand X in these complexes can be predicted using the equations, viz. BDEX(Pd) = 1.196EX − 0.603EXY − 0.118EX’Y’ + 0.442DX + 15.169 for Pd(II) complexes and BDEX(Pt) = 1.420EX − 0.741EXY − 0.125EX’Y’ + 0.498DX + 13.852 for Pt(II) complexes, where DX corresponds to the bond dissociation energy of X in [MIICl3X]n− complexes. These expressions suggest that the mutual trans influence from X and Y is more dominant than the mutual trans influence from X′ and Y′ and both factors contribute significantly to the weakening of M-X bond. We also obtained a strong linear relationship between EX and the electron density ρ(r) at the bond critical point of M-Cl bond trans to the X in [MIICl3X]n− and this allows us to express the BDEX(Pd) and BDEX(Pt) in terms of only the ρ(r) and DX. We have demonstrated that using a database comprising of DX and the ρ(r), the bond dissociation energy of X in complexes of the type [MIIX(Y)X′(Y′)] can be predicted.  相似文献   

16.
Eric Magnusson 《Tetrahedron》1985,41(22):5235-5240
Substituent effects in directly bonded P(III) compounds are investigated by ab initio MO calculations of relative energies and the results compared with those for the corresponding nitrogen species. The investigation covers substitution by X = BH2, CH3, NH2, OH, F in PHX-, PH2X, and PH3X+ series molecules with some attention also to PX3 and PX3H+ species. Except for compounds containing the π-acceptor substituent BH2, σ-interactions dominate substitution behaviour but the second row species tolerate electron withdrawal better than their first row analogues, the severe destabilization of NH2X and NH3X+ by σ-electron withdrawal being absent from PH2X and PH3X+. In contrast to the σ-withdrawing NH2 group, the PH2 group is characterized as a mild σ-donor. PH- is a σ-donor and PH+3 a σ-acceptor. π-Bonding to the second row atom is an important means of maintaining electroneutrality in the PH3X+ series, where dπ functions have a bigger role than pπ functions.  相似文献   

17.
Summary Nickel(II) and copper(II) complexes of 2,5-dimethyl-1,3,4-thiadiazole Ni(DTZ)X2 (X = Cl or Br) and M(DTZ)2X2 (M = Ni, X = 1 or N03; M = Cu, X = Cl, Br or NO3) have been prepared. The i.r. spectra show that in all the complexes the ligand is N,N- or N-bonded to the metal while the sulfur atom does not participate in coordination, and that the halide ions are coordinated forming terminal M-X bonds. The NO 3 - group is coordinated in both the nitrato complexes. Magnetic moments of 3.07–3.29 B.M. for the nickel(II) and 1.86–1.92 B.M. for the copper(II) complexes were observed. The Ni(DTZ)X2 complexes have a pseudo-tetrahedral [N2X2] coordination with N,N-bridging ligand molecules. The Ni(DTZ)2X2 and Cu(DTZ)2X2 complexes, with predominantly monodentate ligand, involve six-coordinate metal atoms with strong equatorial [N2X2] bonds and weaker axial bonds.Author to whom all correspondence should be directed.  相似文献   

18.
High‐level calculations (RI‐MP2/def2‐TZVP) disclosed that the σ‐hole in between two C atoms of cycloalkane X2C?CX2 structures (X=F, CN) is increasingly exposed with decreasing ring size. The interacting energy of complexes of F?, HO?, N≡C?, and H2CO with cyclopropane and cyclobutane X2C?CX2 derivatives was calculated. For X=F, these energies are small to positive, while for X=CN they are all negative, ranging from ?6.8 to ?42.3 kcal mol?1. These finding are corroborated by a thorough statistical survey of the Cambridge Structural Database (CSD). No clear evidence could be found in support of non‐covalent carbon bonding between electron‐rich atoms (El.R.) and F2C?CF2 structures. In marked contrast, El.R.???(CN)2C?C(CN)2 interactions are abundant and highly directional. Based on these findings, the hydrophobic electrophilic bowl formed by 1,1′,2,2′‐tetracyano cyclopropane or cyclobutane derivatives is proposed as a new and synthetically accessible supramolecular synthon.  相似文献   

19.
The complex formation of PdII with tris[2-(dimethylamino)ethyl]amine (N(CH2CH2N(CH3)2)3, Me6tren) was investigated at 25° and ionic strength I = 1, using UV/VIS, potentiometric, and NMR measurements. Chloride, bromide, and thiocyanate were used as auxiliary ligands. The stability constant of [Pd(Me6tren)]2+ in various ionic media was obtained: log β([Pd(Me6tren)] = 30.5 (I = 1(NaCl)) and 30.8 (I = 1(NaBr)), as well as the formation constants of the mixed complexes [Pd(HMe6tren)X]2+ from [Pd(HMe6tren)(H2O)]3+:log K = 3.50 = Cl?) and 3.64 (X? = Br?) and [Pd(Me6tren)X]+ from [Pd(Me6tren)(H2O)]2+: log K = 2.6 (X? = Cl?), 2.8(Br?) and 5.57 (SCN?) at I = 1 (NaClO3). The above data, as well as the NMR measurements do not provide any evidence for the penta-coordination of PdII, proposed in some papers.  相似文献   

20.
According to the calculation results of the intrapair and interpair correlation energy for the title systems, it has been found that the intrapair correlation energy of K shell of Cl is almost a constant and both the intrashell and intershell correlation energy of K and L shell changes little. It has also been found that in MCl series compounds the value of Cl correlation energy contribution depends on the ionicity of MCl compounds, i.e., the Cl correlation energy contribution increases with the increase of the ionic bond strength of the compound and this value is always less than the correlation energy of Cl- anion but always larger than that of Cl atom. These rules are helpful for the estimation of the correlation energy of ionic compounds and the energy changes of chemical reactions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号