首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 234 毫秒
1.
We discuss the random dopant effects in long channel junctionless transistor associated with quantum confinement effects. The electrical measurement reveals the threshold voltage variability induced by the random dopant fluctuation.Quantum transport features in Hubbard systems are observed in heavily phosphorus-doped channel. We investigate the single electron transfer via donor-induced quantum dots in junctionless nanowire transistors with heavily phosphorusdoped channel, due to the formation of impurity Hubbard bands. While in the lightly doped devices, one-dimensional quantum transport is only observed at low temperature. In this sense, phonon-assisted resonant-tunneling is suppressed due to misaligned levels formed in a few isolated quantum dots at cryogenic temperature. We observe the Anderson-Mott transition from isolate electron state to impurity bands as the doping concentration is increased.  相似文献   

2.
吴歆宇  韩伟华  杨富华 《物理学报》2019,68(8):87301-087301
在小于10 nm的沟道空间中,杂质数目和杂质波动范围变得十分有限,这对器件性能有很大的影响.局域纳米空间中的电离杂质还能够展现出量子点特性,为电荷输运提供两个分立的杂质能级.利用杂质原子作为量子输运构件的硅纳米结构晶体管有望成为未来量子计算电路的基本组成器件.本文结合安德森定域化理论和Hubbard带模型对单个、分立和耦合杂质原子系统中的量子输运特性进行了综述,系统介绍了提升杂质原子晶体管工作温度的方法.  相似文献   

3.
Graphene nanostructures are promising candidates for future nanoelectronics and solid-state quantum information technology. In this review we provide an overview of a number of electron transport experiments on etched graphene nanostructures. We briefly revisit the electronic properties and the transport characteristics of bulk, i.e., two-dimensional graphene. The fabrication techniques for making graphene nanostructures such as nanoribbons, single electron transistors and quantum dots, mainly based on a dry etching ??paper-cutting?? technique are discussed in detail. The limitations of the current fabrication technology are discussed when we outline the quantum transport properties of the nanostructured devices. In particular we focus here on transport through graphene nanoribbons and constrictions, single electron transistors as well as on graphene quantum dots including double quantum dots. These quasi-one-dimensional (nanoribbons) and quasi-zero-dimensional (quantum dots) graphene nanostructures show a clear route of how to overcome the gapless nature of graphene allowing the confinement of individual carriers and their control by lateral graphene gates and charge detectors. In particular, we emphasize that graphene quantum dots and double quantum dots are very promising systems for spin-based solid state quantum computation, since they are believed to have exceptionally long spin coherence times due to weak spin-orbit coupling and weak hyperfine interaction in graphene.  相似文献   

4.
Electronic transport through a one-dimensional quantum dot array is theoretically studied. In such a system both electron reservoirs of continuum states couple with the individual component quantum dots of the array arbitrarily. When there are some dangling quantum dots in the array outside the dot(s) contacting the leads, the electron tunneling through the quantum dot array is wholly forbidden if the electron energy is just equal to the molecular energy levels of the dangling quantum dots, which is called as antiresonance of electron tunneling. Accordingly, when the chemical potential of the reservoir electrons is aligned with the electron levels of all quantum dots, the linear conductance at zero temperature vanishes if there are odd number dangling quantum dots; Otherwise, it is equal to 2e2/h due to resonant tunneling if the total number of quantum dots in the array is odd. This odd–even parity is independent of the interdot and the lead–dot coupling strength.  相似文献   

5.
周洋  郭健宏 《物理学报》2015,64(16):167302-167302
Majorana费米子是其自身的反粒子, 在拓扑量子计算中有着重要的应用. 利用粒子数表象下的量子主方程方法, 研究双量子点与Majorana费米子混合结构的电子输运特性, 特别是散粒噪声. 有无Majorana费米子耦合的电流与散粒噪声存在明显差别: 有Majorana费米子耦合时稳态电流差呈反对称, 噪声谱呈现相干振荡并且低频噪声显著增强. 量子点与Majorana费米子对称弱耦合时, 零频噪声由"峰"变为"谷", 并且"边谷"展宽逐渐减小; 当对称强耦合时, 零频噪声的谷深增加, "边谷"向高频端移动. 改变系统与电极的耦合强度时, 零频噪声由谷变成峰. 因此, 稳态电流结合散粒噪声可以探测双量子点结构中Majorana费米子是否存在.  相似文献   

6.
Transport spectroscopy reveals the microscopic features of few-electron quantum dots which justify the nameartificial atoms. New physics evolve when two quantum dots are coupled by a tunneling barrier. We study, both theoretically and experimentally, the tunneling spectroscopy on a double quantum dot. A detailed lineshape analysis of the conductance resonances proves that off-resonant coherent interdot tunneling governs transport through this system, while tunneling into the double quantum dot occurs resonantly. This coherent interdot tunneling witnesses the evolution of a delocalized electronic state which can be compared to a valence electron of thisartificial molecule.  相似文献   

7.
Single and multiple n-channel junctionless nanowire transistors(JNTs) are fabricated and experimentally investigated at variable temperatures. Clear current oscillations caused by the quantum-confinement effect are observed in the curve of drain current versus gate voltage acquired at low temperatures(10 K–100 K) and variable drain bias voltages(10 mV–90 mV). Transfer characteristics exhibit current oscillation peaks below flat-band voltage(VFB) at temperatures up to 75 K,which is possibly due to Coulomb-blocking from quantum dots, which are randomly formed by ionized dopants in the just opened n-type one-dimensional(1D) channel of silicon nanowires. However, at higher voltages than VFB, regular current steps are observed in single-channel JNTs, which corresponds to the fully populated subbands in the 1D channel. The subband energy spacing extracted from transconductance peaks accords well with theoretical predication. However, in multiple-channel JNT, only tiny oscillation peaks of the drain current are observed due to the combination of the drain current from multiple channels with quantum-confinement effects.  相似文献   

8.
李国华 《物理》2001,30(8):506-510
当器件的尺度小型与电子的平均自由程相当时,电子的输运可以看作弹道输运。文章介绍了隧穿热电子晶体管输运放大器和电子能谱仪两种工作模式下的工作原理以及用共振隧穿热电子晶体管做成的记忆器,如果器件的尺寸进一步减小,电子的波动特性也必须考虑,文章介绍了研究这种器件中的输运特性的方法及量子干涉晶体管和量子反射晶体管的工作原理。  相似文献   

9.
We demonstrate electron transport spectroscopy through a dopant atom array in n-doped silicon junctionless nanowire transistors within a temperature range from 6 K to 250 K. Several current steps are observed at the initial stage of the transfer curves below 75 K, which result from the electron transport from Hubbard bands to one-dimensional conduction band. The current-off voltages in the transfer curves have a strikingly positive shift below 20 K and a negative shift above 20 K due to the electrostatic screening induced by the ionized dopant atoms. There exists the minimum electron mobility at a critical temperature of 20 K, resulting from the interplay between thermal activation and impurity scattering. Furthermore, electron transport behaviors change from hopping conductance to thermal activation conductance at the temperature of 30 K.  相似文献   

10.
We report on the fabrication and the characterization of quantum dot transistors incorporating a single self-assembled quantum dot. The current–voltage characteristics exhibit clear staircase structures at room temperature. They are attributed to electron tunneling through the quantized energy levels of a single quantum dot.  相似文献   

11.
琚鑫  郭健宏 《物理学报》2011,60(5):57302-057302
本文利用非平衡格林函数运动方程方法,研究了与两个电极耦合在一起的三耦合量子点系统的微分电导及量子干涉的AB振荡问题.通过理论计算发现,由于量子点上的局域态密度的不同从而导致系统电导或隧穿性质的不同,而且量子点间耦合强度、量子点能级等都会对输运性质产生影响. 关键词: 量子点 非平衡格林函数 运动方程 局域态密度  相似文献   

12.
马刘红  韩伟华  王昊  吕奇峰  张望  杨香  杨富华 《中国物理 B》2016,25(6):68103-068103
Silicon junctionless nanowire transistor(JNT) is fabricated by femtosecond laser direct writing on a heavily n-doped SOI substrate.The performances of the transistor,i.e.,current drive,threshold voltage,subthreshold swing(SS),and electron mobility are evaluated.The device shows good gate control ability and low-temperature instability in a temperature range from 10 K to 300 K.The drain currents increasing by steps with the gate voltage are clearly observed from 10 K to50 K,which is attributed to the electron transport through one-dimensional(1D) subbands formed in the nanowire.Besides,the device exhibits a better low-field electron mobility of 290 cm~2·V~(-1)·s~(-1),implying that the silicon nanowires fabricated by femtosecond laser have good electrical properties.This approach provides a potential application for nanoscale device patterning.  相似文献   

13.
Tunneling transport through a one-barrier GaAs/(AlGa)As/GaAs heterostructure containing self-assembled InAs quantum dots has been investigated at low temperatures. An anomalous increase in the tunneling current through quantum dots in magnetic fields oriented both parallel and perpendicular to the current is observed. This increase is a manifestation of the Fermi-edge singularity in the current as a result of the interaction of a tunneling electron with the electron gas in the emitter.  相似文献   

14.
基于单电子隧穿和库仑阻塞效应,研究了硅量子线中的单电子输运特性.利用绝缘体上硅薄膜材料作为衬底构建侧栅结构的硅量子线单电子晶体管,通过背栅和侧栅对量子线的电子输运特性进行调制.实验发现,在硅量子线中分别观察到背栅和侧栅调制的单电子效应和库仑振荡现象.从微分电导的二维灰度轮廓图,清楚地观察到了库仑阻塞区,说明由于栅压导致在硅量子线中形成了库仑岛. 关键词: 库仑振荡 单电子效应 硅量子线  相似文献   

15.
We investigate the conductance of an InAs nanowire in the nonlinear regime in the case of low electron density where the wire is split into quantum dots connected in series. The negative differential conductance in the wire is initiated by means of a charged atomic force microscope tip adjusting the transparency of the tunneling barrier between two adjoining quantum dots. We confirm that the negative differential conductance arises due to the resonant tunneling between these two adjoining quantum dots. The influence of the transparency of the blocking barriers and the relative position of energy states in the adjoining dots on a decrease of the negative differential conductance is investigated in detail.  相似文献   

16.
We study theoretically the geometric phase of a double-quantum-dot(DQD) system measured by a quantum point contact(QPC) in the pure dephasing and dissipative environments, respectively. The results show that in these two environments, the coupling strength between the quantum dots has an enhanced impact on the geometric phase during a quasiperiod. This is due to the fact that the expansion of the width of the tunneling channel connecting the two quantum dots accelerates the oscillations of the electron between the quantum dots and makes the length of the evolution path longer.In addition, there is a notable near-zero region in the geometric phase because the stronger coupling between the system and the QPC freezes the electron in one quantum dot and the solid angle enclosed by the evolution path is approximately zero,which is associated with the quantum Zeno effect. For the pure dephasing environment, the geometric phase is suppressed as the dephasing rate increases which is caused only by the phase damping of the system. In the dissipative environment,the geometric phase is reduced with the increase of the relaxation rate which results from both the energy dissipation and phase damping of the system. Our results are helpful for using the geometric phase to construct the fault-tolerant quantum devices based on quantum dot systems in quantum information.  相似文献   

17.
We observed the tunneling process of photo-excited holes in neutral InP quantum dots and Pauli blocking of charged InP quantum dots. A highly sensitive heterodyne-detected photon echo method enabled us to observe the signal from one layer of self-assembled InP quantum dots under the electric field. The electric field could control the charging or neutralization of the InP quantum dots and hence the photon echo signal decreased considerably with the increase of electron doping. The photon echo of neutral InP quantum dots under the electric field showed tunneling-induced dephasing, which decays non-exponentially reflecting the non-Markovian nature of the tunneling process.  相似文献   

18.
The results of the investigation of tunneling transport through a GaAs/(AlGa)As/GaAs single-barrier heterostructure containing InAs self-assembled quantum dots at low temperatures are reported. An anomalous increase in the tunneling current through the quantum dots has been observed in the presence of a magnetic field both parallel and perpendicular to the current. This increase is a manifestation of a Fermi-edge singularity appearing in the current due to the interaction of a tunneling electron with the electron gas in an emitter.  相似文献   

19.
李宏伟  王太宏 《物理学报》2001,50(12):2501-2505
在77到292K的范围内,系统研究了含InAs自组装量子点的金属-半导体-金属双肖特基势垒二极管的输运特性.随着温度上升,量子点的存储效应引起的电流回路逐渐减小.在测试温度范围内,通过量子点的共振隧穿过程在电流电压(I-V)曲线中造成台阶结构,且使电流回路随温度的上升急剧减小.根据肖特基势垒的反向I-V曲线,计算了势垒的反向饱和电流密度和平均理想因子.发现共振随穿效应使肖特基势垒在更大的程度上偏离了理想情况,而量子点的电子存储效应主要改变了肖特基势垒的有效势垒高度,从而影响了势垒的反向饱和电流密度 关键词: 自组装量子点 肖特基势垒 电流-电压特性  相似文献   

20.
The time-dependent transport through an ultrasmall quantum dot coupling to two electron reservoirs is investigated. The quantum dot is perturbed by a quantum microwave field (QMF) through gate. The tunneling current formulae are obtained by taking expectation values over coherent state (CS), and SU(1,1) CS. We derive the transport formulae at low temperature by employing the nonequilibrium Green function technique. The currents exhibit coherent behaviors which are strongly associated with the applied QMF. The time-dependent currents appear compound effects of resonant tunneling and time-oscillating evolution. The time-averaged current and differential conductance are calculated, which manifest photon-assisted behaviors. Numerical calculations reveal the similar properties as those in classical microwave field (CMF) perturbed system for the situations concerning CS and squeezed vacuum SU(1,1) CS. But for other squeezed SU(1,1) CS, the tunneling behavior is quite different from the system perturbed by a single CMF through gate. Due to the quantum signal perturbation, the measurable quantities fluctuate fiercely. Received 28 May 1998  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号