首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Organic–inorganic halide perovskite solar cells (PSCs) have attracted much attention due to their rapid increase in power conversion efficiencies (PCEs), and many efforts are devoted to further improving the PCEs. Designing highly efficient hole transport materials (HTMs) for PSCs may be one of the effective ways. Herein we theoretically designed three new HTMs (FDT−N, FDT−O, and FDT−S) by introducing a nitrogen-phenyl group, an oxygen atom, and a sulfur atom into the spiro core of an experimentally synthesized HTM (FDT), respectively. And then we performed quantum chemical calculation to study their application potential. The results show that the devices with FDT−O and FDT−S instead of FDT may have higher open circuit voltages owing to their lower highest occupied molecular orbital (HOMO) energy levels. Moreover, FDT−S exhibits the best hole transport performance among the studied HTMs, which may be due to the significant HOMO-HOMO overlap in the hole hopping path with the largest transfer integral. Furthermore, the results on interface properties indicate that introducing oxygen and sulfur atoms can enhance the MAPbI3/HTM interface interaction. The present work not only offers two promising HTMs (FDT−O and FDT−S) for PSCs but also provides theoretical help for subsequent research on HTMs.  相似文献   

2.
Hole transport materials (HTMs) with high hole mobility, good band alignment and ease of fabrication are highly desirable for perovskite solar cells (PSCs). Here, we designed and synthesized novel organic HTMs, named T3, which can be synthesized in high yields with commercially available materials, featuring a substituted pyrrole core and triphenylamine peripheral arms. The capability of functionalization in the final synthetic step provides an efficient way to obtain a variety of T3-based HTMs with tunable energy levels and other properties. Among them, fluorine-substituted T3 (T3-F) exhibits the best band alignment and hole extraction properties, leading to PSCs with outstanding PCEs of 24.85 % and 24.03 % (certified 23.46 %) for aperture areas of 0.1 and 1 cm2, respectively. The simple structure and tunable performance of T3 can inspire further optimization for efficient PSCs.  相似文献   

3.
Modulating the surface charge transport behavior of hole transport materials (HTMs) would be as an potential approach to improve their hole mobility, while yet realized for fabricating efficient photovoltaic devices. Here, an oxygen bridged dimer-based monoamine FeIII porphyrin supramolecule is prepared and doped in HTM film. Theoretical analyses reveal that the polaron distributed on dimer can be coupled with the parallel arranged polarons on adjacent dimers. This polaron coupling at the interface of supramolecule and HTM can resonates with hole flux to increase hole transport efficiency. Mobility tests reveal that the hole mobility of doped HTM film is improved by 8-fold. Doped perovskite device exhibits an increased efficiency from 19.8 % to 23.2 %, and greatly improved stability. This work provides a new strategy to improve the mobility of HTMs by surface carrier modulation, therefore fabricating efficient photovoltaic devices.  相似文献   

4.
For highly efficient and stable perovskite solar cells (PSCs), hole transport material (HTM) should be designed and synthesized to afford suitable energy levels, high charge transport, efficient passivation ability, and high device stability. Here, we systematically modulated benzo[1,2-b:4,5:b']dithiophene-based polymer by finely controlling the thienyl and pyridyl contents within the conjugated backbone in order to develop a high performance dopant-free HTM for PSCs. We found that the optimized copolymer with 25% of pyridine content exhibits improved energy level, charge transport, and morphology compared with control homopolymers. As a result, remarkably high power conversion efficiencies up to 21.1% were achieved by employing the optimized polymer as a dopant-free HTM in PSCs.  相似文献   

5.
The development of alternative low-cost and high-performing hole-transporting materials(HTMs) is of great significance for the potential large-scale application of perovskite solar cells(PSCs) in the future.Here,a facilely synthesized solution-processable copper tetra-(2,4-dimethyl-3-pentoxy) phthalocyanine(CuPc-DMP) via only two simple steps,has been incorporated as a hole-transporting material(HTM) in mesoscopic perovskite solar cells(PSCs).The optimized devices based on such a HTM afford a very competitive power conversion efficiency(PCE) of up to 17.1%measured at 100 mW cm~(-2) AM 1.5G irradiation,which is on par with that of the well-known 2,2',7,7'-tetrakis(N'N'-di-p-methoxyphenylamine)-9,9'-spirobifluorene(spiro-OMeTAD)(16.7%) under equivalent conditions.This is,to the best of our knowledge,the highest value reported so far for metal organic complex-based HTMs in PSCs.The advantages of this HTM observed,such as facile synthetic procedure,superior hole transport characteristic,high photovoltaic performance together with the feasibility of tailoring the molecular structure would make solution-processable copper phthalocyanines as a class of promising HTM that can be further explored in PSCs.The present finding highlights the potential application of solution processed metal organic complexes as HTMs for cost-effective and high-performing PSCs.  相似文献   

6.
A novel hole‐transporting molecule (F101) based on a furan core has been synthesized by means of a short, high‐yielding route. When used as the hole‐transporting material (HTM) in mesoporous methylammonium lead halide perovskite solar cells (PSCs) it produced better device performance than the current state‐of‐the‐art HTM 2,2′,7,7′‐tetrakis‐(N,N‐di‐p‐methoxyphenylamine)‐9,9′‐spirobifluorene (spiro‐OMeTAD). The F101‐HTM‐based device exhibited both slightly higher Jsc (19.63 vs. 18.41 mA cm?2) and Voc (1.1 vs. 1.05 V) resulting in a marginally higher power conversion efficiency (PCE) (13.1 vs. 13 %). The steady‐state and time‐resolved photoluminescence show that F101 has significant charge extraction ability. The simple molecular structure, short synthesis route with high yield and better performance in devices makes F101 an excellent candidate for replacing the expensive spiro‐OMeTAD as HTM in PSCs.  相似文献   

7.
Advancing inverted (p-i-n) perovskite solar cells (PSCs) is critical for commercial applications given their compatibility with different bottom cells for tandem photovoltaics, low-temperature processability (≤100 °C), and promising operational stability. Although inverted PSCs have achieved an efficiency of over 25 % using doped or expensive organic hole transport materials (HTMs), their synthesis cost and stability still cannot meet the requirements for their commercialization. Recently, dopant-free and low-cost non-stoichiometric nickel oxide nanocrystals (NiOx NCs) have been extensively studied as a low-cost and effective HTM in perovskite optoelectronics. In this minireview, we summarize the synthesis and surface-functionalization methods of NiOx NCs. Then, the applications of NiOx NCs in other perovskite optoelectronics beyond photovoltaics are discussed. Finally, we provide a perspective for the future development of NiOx NCs for the commercialization of perovskite optoelectronics.  相似文献   

8.
Cao  Jing  Wu  Binghui  Peng  Jian  Feng  Xiaoxia  Li  Congping  Tang  Yu 《中国科学:化学(英文版)》2019,62(3):363-369
A CuI coated Cu hybrid nanostructure by partial iodation of Cu nanowires was used as hole transport material(HTM) to enhance the charge transfer in inverted perovskite solar cells(PSCs). The outer CuI achieved efficient charge extraction, and the inner copper facilitated the extracted charges to be rapidly transferred, further improving the overall cell performance. Furthermore,we employed a mixture of [6,6]-phenyl-C71-butyric acid methyl ester(PCBM) and ZnO nanoparticles as electron transport material(ETM) to achieve the fabrication of stable PSCs. The best efficiency was up to 18.8%. This work represents a fundamental clue for the design of efficient and stable PSCs using the chemical in-situ construction strategy for HTM and integration of PCBM and ZnO as ETM.  相似文献   

9.
Lithium bis(trifluoromethanesulfonyl)imide (Li-TFSI) has been identified as the most used and effective p-dopant for hole transport layer (HTL) in perovskite solar cells (PSCs). However, the migration and agglomeration of Li-TFSI in HTL negatively impact PSCs performance and stability. Herein, we report an effective strategy for adding a liquid crystal organic small molecule (LQ) into Li-TFSI doped (2,2′,7,7′-tetrakis(N,N-di-p-methoxyphenylamine)-9,9′- spirobifluorene (Spiro-OMeTAD) HTL. It was found that the introduction of LQ into Spiro-OMeTAD HTL can efficiently enhance the charge carrier extraction and transportation in device, which can strongly retard the charge carrier recombination in device. Consequently, the PSCs efficiency is significantly enhanced to 24.42 % (Spiro-OMeTAD+LQ) from 21.03 % (Spiro-OMeTAD). The chemical coordination between LQ and Li-TFSI can strongly confine Li+ ions migration and agglomeration of Li-TFSI, thus, achieving the enhanced device stability. Only a 9 % efficiency degradation is observed for un-encapsulated device prepared with Spiro-OMeTAD and LQ after 1700 h under air environment, while the efficiency drops by 30 % for the reference device. This work provides an effective strategy for improving the efficiency and stability of PSCs, and gives some important insights for understanding intrinsic hot carriers dynamics for perovskite-based optoelectronic devices.  相似文献   

10.
钙钛矿太阳能电池由于具有高的光电转换效率,简单的溶液加工工艺,较低的成本等优势因而拥有广阔的应用前景。有机小分子空穴传输层材料在钙钛矿太阳能电池中扮演着极其重要的角色。在本工作中,我们设计和合成了基于吡嗪为分子中心核,三苯胺为分枝的X型空穴传输层材料PT-TPA。与Si-OMeTPA对比,吡嗪的引入不仅不会影响其结晶性,并且能够改善其电荷转移特性和分子中心共平面性,从而显著提升了PT-TPA的空穴迁移率。在非掺杂的情况之下,基于PT-TPA空穴传输层的p-i-n型钙钛矿太阳能电池展现出17.52%的光电转换效率,与相同条件下基于Si-OMeTPA空穴传输层的器件相比,效率提高了近15%。  相似文献   

11.
苏斌  刘莹  朱恩伟  车广波 《化学通报》2020,83(8):698-703
钙钛矿太阳能电池(PSCs)因易于制备、生产成本低和能量转换效率高而受到广泛关注。聚乙撑二氧噻吩-聚(苯乙烯磺酸盐)(PEDOT∶PSS)由于具有易低温加工、透光度高和适宜空穴迁移率等特点而成为PSCs中空穴传输层的研究热点。本文简述了倒置PSCs的结构及工作原理,重点介绍了掺杂PEDOT∶PSS空穴传输层在PSCs领域的研究现状。分别从有机化合物掺杂剂、无机化合物掺杂剂和表面活性剂掺杂剂三个类别概述了掺杂PEDOT∶PSS空穴传输层对PSCs性能的影响。最后,对该领域存在的问题提出潜在措施以改善PEDOT∶PSS掺杂层在PSCs中的应用。  相似文献   

12.
Inspired by the structural feature of the classical hole‐transport material (HTM), Spiro‐OMeTAD, many analogues based on a highly symmetrical spiro‐core were reported for perovskite solar cells (PSCs). However, these HTMs were prone to crystallize because of the high molecular symmetry, forming non‐uniform films, unfavorable for the device stability and large‐area processing. By lowering the symmetry of spiro‐core, we report herein a novel spirobisindane‐based HTM, Spiro‐I, which could form amorphous films with high uniformity and morphological stability. Compared to the Spiro‐OMeTAD‐based PSCs, those containing Spiro‐I exhibit similar efficiencies for small area but higher ones for large area (1 cm2), and especially much higher air stability (retaining 80 % of initial PCE after 2400 h storage without encapsulation). Moreover, the Spiro‐I can be synthesized from a cheap starting material bisphenol A and used with a small amount for the device fabrication.  相似文献   

13.
The construction of state‐of‐the‐art hole‐transporting materials (HTMs) is challenging regarding the appropriate molecular configuration for simultaneously achieving high morphology uniformity and charge mobility, especially because of the lack of appropriate building blocks. Herein a semi‐locked tetrathienylethene (TTE) serves as a promising building block for HTMs by fine‐tuning molecular planarity. Upon incorporation of four triphenylamine groups, the resulting TTE represents the first hybrid orthogonal and planar conformation, thus leading to the desirable electronic and morphological properties in perovskite solar cells (PSCs). Owing to its high hole mobility, deep lying HOMO level, and excellent thin film quality, the dopant‐free TTE‐based PSCs exhibit a very promising efficiency of over 20 % with long‐term stability, achieving to date the best performances among dopant‐free HTM‐based planar n‐i‐p structured PSCs.  相似文献   

14.
A decade of significant research has led to the emergence of photovoltaic solar cells based on perovskites that have achieved an exceptionally high-power conversion efficiency of 26.08%. A key breakthrough in perovskite solar cells (PSCs) occurred when solid hole-transporting materials (HTMs) replaced liquid electrolytes in dye-sensitized solar cells (DSSCs), because HTMs play a crucial role in improving photovoltaic performance as well as cell stability. This review is mainly focused on the HTMs that are responsible for hole transport and extraction in PSCs, which is one of the crucial components for efficient devices. Here, we have reviewed small molecular as well as polymeric HTMs that have been reported in the last two years and discussed their performance based on the analysis of their molecular architectures. Finally, we include a perspective on the molecular engineering of new functional HTMs for highly efficient stable PSCs.  相似文献   

15.
Electrochemical impedance spectroscopy (EIS) and transient voltage decay measurements are applied to compare the performance of dye sensitized solar cells (DSCs) using organic electrolytes, ionic liquids and organic‐hole conductors as hole transport materials (HTM). Nano‐crystalline titania films sensitized by the same heteroleptic ruthenium complex NaRu(4‐carboxylic acid‐4′‐carboxylate) (4,4′‐dinonyl‐2,2′‐bipyridyl)(NCS)2 , coded Z‐907Na are employed as working electrodes. The influence of the nature of the HTM on the photovoltaic figures of merit, that is, the open circuit voltage, short circuit photocurrent and fill factor is evaluated. In order to derive the electron lifetime, as well as the electron diffusion coefficient and charge collection efficiency, EIS measurements are performed in the dark and under illumination corresponding to realistic photovoltaic operating conditions of these mesoscopic solar cells. A theoretical model is established to interpret the frequency response off the impedance under open circuit conditions, which is conceptually similar to photovoltage transient decay measurements. Important information on factors that govern the dynamics of electron transport within the nanocrystalline TiO2 film and charge recombination across the dye sensitized heterojunction is obtained.  相似文献   

16.
Defects in perovskite are key factors in limiting the photovoltaic performance and stability of perovskite solar cells (PSCs). Generally, choline halide (ChX) can effectively passivate defects by binding with charged point defects of perovskite. However, we verified that ChI can react with CsPbI3 to form a novel crystal phase of one-dimensional (1D) ChPbI3, which constructs 1D/3D heterostructure with 3D CsPbI3, passivating the defects of CsPbI3 more effectively and then resulting in significantly improved photoluminescence lifetime from 20.2 ns to 49.4 ns. Moreover, the outstanding chemical inertness of 1D ChPbI3 and the repair of undesired δ-CsPbI3 deficiency during its formation process can significantly enhance the stability of CsPbI3 film. Benefiting from 1D/3D heterostructure, CsPbI3 carbon-based PSCs (C-PSCs) delivered a champion efficiency of 18.05 % and a new certified record of 17.8 % in hole transport material (HTM)-free inorganic C-PSCs.  相似文献   

17.
The pressure to move towards renewable energy has inspired researchers to look for ideas in photovoltaics that may lead to a major breakthrough. Recently the use of perovskites as a light harvester has lead to stunning progress. The power conversion efficiency of perovskite solar cells is now approaching parity (>22 %) with that of the established technology which took decades to reach this level of performance. The use of a hole transport material (HTM) remains indispensable in perovskite solar cells. Perovskites can conduct holes, but they are present at low levels, and for efficient charge extraction a HTM layer is a prerequisite. Herein we provide an overview of the diverse types of HTM available, from organic to inorganic, in the hope of encouraging further research and the optimization of these materials.  相似文献   

18.
Poly(3, 4-ethylenedioxythiophene): poly(styrenesulfonate) (PEDOT: PSS) has been widely adopted as hole transport material (HTM) in inverted perovskite solar cells (PSCs), due to high optical transparency, good mechanical flexibility, and high thermal stability; however, its acidity and hygroscopicity inevitably hamper the long-term stability of the PSCs and its energy level does not match well with perovskite materials with a relatively low open-circuit voltage. In this work, p-type delafossite CuCrO\begin{document}$ _2 $\end{document} nanoparticles synthesized through hydrothermal method was employed as an alternative HTM for triple cation perovskite [(FAPbI\begin{document}$ _3 $\end{document})\begin{document}$ _{0.87} $\end{document}(MAPbBr\begin{document}$ _3 $\end{document})\begin{document}$ _{0.13} $\end{document}]\begin{document}$ _{0.92} $\end{document}(CsPbI\begin{document}$ _3 $\end{document})\begin{document}$ _{0.08} $\end{document} (possessing better photovoltaic performance and stability than conventional CH\begin{document}$ _3 $\end{document}NH\begin{document}$ _3 $\end{document}PbI\begin{document}$ _3 $\end{document}) based inverted PSCs. The average open-circuit voltage of PSCs increases from 908 mV of the devices with PEDOT: PSS HTM to 1020 mV of the devices with CuCrO\begin{document}$ _2 $\end{document} HTM. Ultraviolet photoemission spectroscopy demonstrates the energy band alignment between CuCrO\begin{document}$ _2 $\end{document} and perovskite is better than that between PEDOT: PSS and perovskite, the electrochemical impedance spectroscopy indicates CuCrO\begin{document}$ _2 $\end{document}-based PSCs exhibit larger recombination resistance and longer charge carrier lifetime than PEDOT: PSS-based PSCs, which contributes to the high \begin{document}$ V_{\rm{OC}} $\end{document} of CuCrO\begin{document}$ _2 $\end{document} HTM-based PSCs.  相似文献   

19.
《中国化学》2018,36(4):280-286
We successfully designed and synthesized two BDT‐BT‐T (BDT=benzo[1,2‐b:4,5‐b']dithiophene, BT‐T=4,7‐dithien‐2‐yl‐2,1,3‐benzothiadiazole) based polymers as the electron donor for application in all‐polymer solar cells (all‐PSCs). By adopting N2200 as the electron acceptor, we systematically investigated the impact of fluorination on the charge transfer, transport, blend morphology and photovoltaic properties of the relevant all‐PSCs. A best power conversion efficiency (PCE) of 3.4% was obtained for fluorinated PT‐BT2F/N2200 (BT2F=difluorobenzo[c][1,2,5]thiadiazole) all‐PSCs in comparison with that of 2.7% in non‐fluorinated PT‐BT/N2200 (BT=benzothiadiazole) based device. Herein, all‐polymers blends adopting either non‐fluorinated PT‐BT or fluorinated PT‐BT2F exhibit similar morphology features. In depth optical spectrum measurements demonstrate that molecular fluorination can further enhance charge transfer between donor and acceptor polymer. Moreover, all‐polymer blends exhibit improved hole mobilities and more balanced carriers transport when adopting fluorinated donor polymer PT‐BT2F. Therefore, although the PCE is relatively low, our findings may become important in understanding how subtle changes in molecular structure impact relevant optoelectronic properties and further improve the performance of all‐PSCSs.  相似文献   

20.
Li  Chunling  He  Ruiqin  Liang  Qing  Cao  Jing  Yin  Jun  Tang  Yu 《中国科学:化学(英文版)》2020,63(8):1053-1058
The preparation of suitable hole transport material(HTM) is critical to the performance and stability of perovskite solar cells(PSCs) with low-cost. Herein, a mass producible and soluble copper phthalocyanine decorated with butoxy donor groups(CuPcOBu) was designed as HTM and prepared by a facile two-step synthetic route. To generate high quality HTM film, 4-tertbutylpyridine(tBP) was doped into CuPc-OBu to prepare the film and then removed by annealing. Such a t BP-assisted strategy resulted in the best efficiency of the PSCs with lead trihalide perovskite up to 19.0%(small-area of 0.1 cm~2) and 10.1%(the active area of 8.0 cm~2 for the module device). And the best efficiency of the tin-based PSCs with CuPc-OBu reached to 6.9%.More importantly, the device with CuPc-OBu as HTM revealed the remarkably enhanced stability. This work provides a new strategy to improve the film-quality of free-doping HTMs and enhance the efficiency and stability of Pb-and Sn-based PSCs with low-cost.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号