首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 687 毫秒
1.
In this work, the fungus Penicillium was used for rapid extra-/intracellular biosynthesis of gold nanoparticles. AuCl4 ions reacted with the cell filtrate of Penicillium sp. resulting in extracellular biosynthesis of gold nanoparticles within 1 min. Intracellular biosynthesis of gold nanoparticles was obtained by incubating AuCl4 solution with fungal biomass for 8 h. The gold nanoparticles were characterized by means of visual observation, UV–Vis absorption spectroscopy, X-ray diffraction (XRD), transmission electron microscopy (TEM), scanning electron microscopy (SEM), and energy-dispersive X-ray spectroscopy (EDX). The extracellular nanoparticles exhibited maximum absorbance at 545 nm in UV–Vis spectroscopy. The XRD spectrum showed Bragg reflections corresponding to the gold nanocrystals. TEM exhibited the formed spherical gold nanoparticles in the size range from 30 to 50 nm with an average size of 45 nm. SEM and TEM revealed that the intracellular gold nanoparticles were well dispersed on the cell wall and within the cell, and they are mostly spherical in shape with an average diameter of 50 nm. The presence of gold was confirmed by EDX analysis.  相似文献   

2.
One-pot synthesis of well dispersed, size-controlled gold nanoparticles with the average size of 10–15 nm and luminescent gold nanoclusters with average size of 1.7–2.0 nm were successfully achieved by thermal decomposition of gold organometallic precursor CH3AuPPh3 in the presence of thiol surfactants in o-xylene. Only difference between the preparations of two types of Au nanoparticles is the amount of thiol surfactant employed. The mechanistic study of formation of gold nanoparticles was carried out by analyzing the samples at different reaction time intervals and revealed that two-staged growth process was involved. The nanoclusters showed strong red emission with the maximum intensity at about 600 nm. The maximum room temperature photoluminescence quantum yield was measured as 1.2%. The catalytic ability of the Au nanoclusters to promote Suzuki–Miyaura coupling involving the C–C bond formation was also investigated.  相似文献   

3.
Biosynthesis of spherical gold nanoparticles and gold nanoplates was achieved at room temperature and pH 2.8 when cell extract from the metal-reducing bacterium Shewanella algae was used as both a reducing and shape-controlling agent. Cell extract, prepared by sonicating a suspension of S. algae cells, was capable of reducing 1 mol/m3 aqueous AuCl4 ions into elemental gold within 10 min when H2 gas was provided as an electron donor. The time interval lapsed since the beginning of the bioreductive reaction was found to be an important factor in controlling the morphology of biogenic gold nanoparticles. After 1 h, there was a large population of well-dispersed, spherical gold nanoparticles with a mean size of 9.6 nm. Gold nanoplates with an edge length of 100 nm appeared after 6 h, and 60% of the total nanoparticle population was due to gold nanoplates with an edge length of 100–200 nm after 24 h. The yield of gold nanoplates prepared with S. algae extract was four times higher than that prepared with resting cells of S. algae. The resulting biogenic gold nanoparticle suspensions showed a large variation in color, ranging from pale pink to purple due to changes in nanoparticle morphology.  相似文献   

4.
We studied the kinetics of the reduction of a gold precursor (HAuCl4) and the effect of the molar ratio (R) of sodium citrate, which was introduced from a seed solution, and the gold precursor on the shape evolution of gold nanomaterials in the presence of preformed 13 nm gold nanoparticles as seeds. The reduction of the gold precursor by sodium citrate was accelerated due to the presence of gold seeds. Nearly single-crystalline gold nanowires were formed at a very low R value (R = 0.16) in the presence of the seeds as a result of the oriented attachment of the growing gold nanoparticles. At a higher R value (R = 0.33), gold nanochains were formed due to the non-oriented attachment of gold nanoparticles. At a much higher R value (R = 1.32), only larger spherical gold nanoparticles grown from the seeds were found. In the absence of gold seeds, no single-crystalline nanowires were formed at the same R value. Our results indicate that the formation of the 1D nanostructures (nanochains and nanowires) at low R values is due to the attachment of gold nanoparticles along one direction, which is driven by the surface energy reduction, nanoparticle attraction, and dipole–dipole interaction between adjacent nanoparticles.  相似文献   

5.
Growth of hydroxyapatite (HA) on gelatin–chitosan composite capped gold nanoparticles is presented for the first time by employing wet precipitation methods and we obtained good yields of HA. Fourier transform infrared spectroscopy (FTIR) spectrum has shown the characteristic bands of phosphate groups in the HA. Scanning electron microscopy (SEM) pictures have shown spherical nanoparticles with the size in the range of 70–250 nm, whereas ≥2–50 nm sized particles were visualized in high resolution transmission electron microscopy (HR-TEM). X-ray diffraction (XRD) spectrum has shown Bragg reflections which are comparable with the HA. Energy dispersive X-ray (EDX) studies have confirmed calcium/phosphate stoichiometric ratio of HA. The thermogravimetric analysis (TGA) has shown about 74% of inorganic crystals in the nanocomposite formed. These results have revealed that gelatin–chitosan capped gold nanoparticles, acted as a matrix for the growth of HA.  相似文献   

6.
An eco-friendly microbial method for synthesis of silver colloid solution with antimicrobial activity is developed using a fungal strain of Penicillium purpurogenum NPMF. It is observed that increase in concentration of AgNO3 increases the formation of silver nanoparticle. At 5 mM concentration highly populated polydispersed nanoparticles form. Furthermore, change in pH of the reaction mixture leads to change in shape and size of silver nanoparticles. At lower pH two peaks are observed in the absorption spectra showing polydispersity of nanoparticles. However, highly monodispersed spherical nanoparticles of 8–10 nm size form with 1 mM AgNO3 concentration at pH 8. Antimicrobial activity of nanoparticles is demonstrated against pathogenic gram negative bacteria like Escherichia coli and Pseudomonas aeruginosa, and gram positive bacteria like Staphylococcus aureus. The antimicrobial activity of silver nanoparticles obtained at different initial pH show strong dependence on the surface area and shape of the nanoparticles.  相似文献   

7.
Our research interest centers on microwave-assisted rapid extracellular synthesis of bio-functionalized silver nanoparticles of 26 ± 5 nm from guava (Psidium guajava) leaf extract with control over dimension and composition. The reaction occurs very rapidly as the formation of spherical nanoparticles almost completed within 90 s. The probable pathway of the biosynthesis is suggested. Appearance, crystalline nature, size and shape of nanoparticles are understood by UV–vis (UV–vis spectroscopy), FTIR (fourier transform infrared spectroscopy), XRD (X-ray diffraction), FESEM (field emission scanning electron microscopy) and TEM (transmission electron microscopy) techniques. Microwave-assisted route is selected for the synthesis of silver nanoparticles to carry out the reaction fast, suppress the enzymatic action and to keep the process environmentally clean and green.  相似文献   

8.
Metallic gold nanoparticles have been synthesized by the reduction of chloroaurate anions [AuCl4] solution with hydrazine in the aqueous starch and ethylene glycol solution at room temperature and at atmospheric pressure. The characterization of synthesized gold nanoparticles by UV–vis spectroscopy, high resolution transmission electron microscopy (HRTEM), electron diffraction analysis, X-ray diffraction (XRD), and X-rays photoelectron spectroscopy (XPS) indicate that average size of pure gold nanoparticles is 3.5 nm, they are spherical in shape and are pure metallic gold. The concentration effects of [AuCl4] anions, starch, ethylene glycol, and hydrazine, on particle size, were investigated, and the stabilization mechanism of Au nanoparticles by starch polymer molecules was also studied by FT-IR and thermogravimetric analysis (TGA). FT-IR and TGA analysis shows that hydroxyl groups of starch are responsible of capping and stabilizing gold nanoparticles. The UV–vis spectrum of these samples shows that there is blue shift in surface plasmon resonance peak with decrease in particle size due to the quantum confinement effect, a supporting evidence of formation of gold nanoparticles and this shift remains stable even after 3 months.  相似文献   

9.
We report the experimental results on temperature-dependent studies of interactions between a novel biocompatible thermosensitive polymer hydrogel and different stabilizing agent capped gold nanoparticles (Au NPs) with particle size ranging from 5 to 20 nm. Stabilizing agents such as thioglycolic acid, tryptophan, and phenylalanine have been used as capping agents for Au NPs. The poly-N-isopropyl acrylamide-co-acrylic acid (pNIPAm-AAc) with 3.0 ± 0.7 μm in size was synthesized by radical polymerization of a selected mixture of N-isopropyl acrylamide (NIPAm), methylene-bis-acrylamide and acrylic acid (AAc). The capped Au NPs were mixed with a solution of pNIPAm-AAc hydrogel. The temperature-dependent properties of the mixture were studied by UV–vis spectroscopy, dynamic light scattering based particle size analysis, and transmission electron microscopy (TEM). The observations indicated change in the lower critical solution temperature (LCST) depending on the nature of the stabilizer, with hydrophobic ones lowering the value while hydrophilic stabilizers increasing the same. Also, the optical absorption due to Au NPs, when stabilized with hydrophobic groups, reduced significantly at above LCST along with significant blue shift of wavelength maximum.  相似文献   

10.
The study of energy transfer mechanism from different capping agents to intrinsic luminescent vacancy centres of zinc sulphide (ZnS) has been reported in the present work. Nanoparticles of capped and uncapped ZnS are prepared by co-precipitation reaction. These nanoparticles are sterically stabilized using organic polymers—poly vinyl pyrrolidone, 2-mercaptoethanol and thioglycerol. Monodispersed nanoparticles were observed under TEM for both capped and uncapped ZnS nanopowders. However, for uncapped ZnS nanopowders, tendency for formation of nanorod like structure exists. Size of ZnS crystallites was calculated from X-ray diffraction pattern. The primary crystallite size estimated from X-ray diffraction pattern is 1.95–2.20 nm for capped nanostructures and 2.2 nm for uncapped nanostructures. FTIR spectra were conducted to confirm capping. Zeta potential measurements have been done to check the stability of dispersed nanoparticles. Band gap measurement was done by UV–visible spectrophotometer. Excitation and emission spectra are also performed in order to compare optical properties in various samples. Increase in emission intensity and band gap has been observed by adding different capping agents in comparison to uncapped ZnS nanoparticles. The results show that in capped ZnS nanoparticles the mechanism of energy transfer from capping layer to photoluminescent vacancy centres is more pronounced.  相似文献   

11.
A facile method is described for synthesising nickel nanoparticles via the thermal decomposition of an organometallic precursor in the presence of excess n-trioctylphosphine as a capping ligand. For the first time, alkylamines with different chain lengths were employed as size-limiting agents in this synthesis. A direct correlation is demonstrated between the size of the alkylamine ligands used and the mean diameter of the nickel nanoparticles obtained. The use of bulky oleylamine as a size-limiting agent over a reaction period of 30 min led to the growth of nickel nanoparticles with a mean diameter of 2.8 ± 0.9 nm. The employment of less bulky N,N-dimethylhexadecylamine groups led to the growth of nickel nanoparticles with a mean diameter of 4.4 ± 0.9 nm. By increasing the reaction time from 30 to 240 min, while employing oleylamine as the size-limiting agent, the mean diameter of the nickel nanoparticles was increased from 2.8 ± 0.9 to 5.1 ± 0.7 nm. Decreasing the amount of capping ligand present in the reaction system allowed further growth of the nickel nanoparticles to 17.8 ± 1.3 nm. The size, structure and morphology of the nanoparticles synthesised were characterised by transmission electron microscopy and powder X-ray diffraction; while magnetic measurements indicated that the particles were superparamagnetic in nature.  相似文献   

12.
Srihari Murthy 《哲学杂志》2013,93(25):3413-3422
Thiol-derivatized gold nanoparticles have been prepared by the reduction of gold cations in an ethanol solvent in the presence of alkanethiols such as dodecanethiol and nonanethiol. Negative ion laser ablation time-of-flight mass spectra (LA-TOF-MS) of the as-prepared samples indicate the presence of a single predominant peak at around 30?kamu even for samples prepared using widely different gold to thiol molar ratios in the reactant mix. The preponderant observation of such nanoparticles in the mass spectra is attributed to a region of especially high thermodynamic stability existing in this mass range for negative ions derived from nanoparticles prepared from the Au–RSH material combine. These studies also support the assertion that the thiol-derivatized gold nanoparticles prepared by the method of Murthy et al. are qualitatively different than that prepared by the method of Brust et al.  相似文献   

13.
Castor oil and ricinoleic acid (an isolate of castor oil) are environmentally friendly bio-based organic surfactants that have been used as capping agents to prepare nearly spherical cadmium sulfide quantum dots (QDs) at 230, 250 and 280 °C. The prepared quantum dots were characterized by Ultra violet–visible (UV–vis), Photoluminescence (PL), Transmission Electron Microscopy (TEM), High Resolution Transmission Electron Microscopy (HRTEM) and X-ray diffraction (XRD) giving an overall CdS QDs average size of 5.14±0.39 nm. The broad XRD pattern and crystal lattice fringes in the HRTEM images showed a hexagonal phase composition of the CdS QDs. The calculated/estimated average size of the prepared castor oil capped CdS QDs for various techniques were 4.64 nm (TEM), 4.65 nm (EMA), 5.35 nm (UV–vis) and 6.46 nm (XRD). For ricinoleic acid capped CdS QDs, the average sizes were 5.56 nm (TEM), 4.78 nm (EMA), 5.52 nm (UV–vis) and 8.21 nm (XRD). Optical properties of CdS QDs showed a change of band gap energy from its bulk band gap of 2.42–2.82 eV due to quantum size confinement effect for temperature range of 230–280 °C. Similarly, a blue shift was observed in the photoluminescence spectra. Scanning electron microscope (SEM) observations show that the as-synthesized CdS QDs structures are spherical in shape. Fourier transform infra-red (FTIR) studies confirms the formation of castor oil and ricinoleic acid capped CdS QDs.  相似文献   

14.
Silver nanoparticles with different sizes (7, 29, and 89 nm mean values) were synthesized using gallic acid in an aqueous chemical reduction method. The nanoparticles were characterized using transmission electron microscopy (TEM), dynamic light scattering (DLS), X-ray diffraction (XRD), and ultraviolet–visible (UV–Vis) absorption spectroscopy; the antibacterial activity was assessed using the standard microdilution method, determining the minimum inhibitory concentration (MIC) according to the National Committee for Clinical Laboratory Standards. From the microscopies studies (TEM) we observed that silver nanoparticles have spherical (7 and 29 nm) and pseudospherical shape (89 nm) with a narrow size distribution. The sizes of the silver nanoparticles were controlled by varying some experimental conditions. It was found that the antibacterial activity of the nanoparticles varies when their size diminishes.  相似文献   

15.
Some size-dependent characteristics of FeCo nanoparticles are investigated in this paper. The nanoparticles are fabricated using a coprecipitation route and their sizes are controlled by changing the reaction time. Transverse electron microscopy (TEM) images show that the nanoparticles are all spherical with an average size of 2–6 nm. The average size obtained from X-ray diffraction (XRD) measurements is in the range 1–3 nm. Magnetic measurements reveal that the nanoparticles are ordered ferromagnetically and have a high coercivity of about 500 Oe. In our measurements, the coercivity was decreased with decreasing particle size, indicating that the nanoparticles were in a single-domain region. Production of FeCo nanoparticles with high coercivity and fine dimension is highly promising for future recording media technology.  相似文献   

16.
《Current Applied Physics》2010,10(3):807-812
ZnO nanoparticles doped with Cu were synthesized by solid state reaction using different precursor routes and varying growth environment. Average crystallite size varied from 40 to 100 nm depending upon synthesis temperature, lower temperature favouring smaller particle size. Scanning electron microscope (SEM) images showed that particles synthesized at 250 °C were in the shape of nanorods but those synthesized at 900 °C had spherical shape. Luminescence emission showed marked dependence on the growth conditions varying from ultraviolet (UV) emission to green emission. For making the luminescent nanoparticles bio-compatible, a bioinorganic interface on ZnO:Cu nanoparticles was created by coating them with inert silica. Surface modification of ZnO:Cu was also done with lipophilic polymethylmethacrylate (PMMA). ZnO:Cu nanoparticles showed hexagonal wurtzite structure and the coating of silica was confirmed with the presence of two extra peaks due to silica in the XRD spectra. Thermogravimetric analysis (TGA) and FTIR spectroscopy indicated that PMMA molecules were adsorbed on the surface of ZnO:Cu nanoparticles. SEM images revealed that PMMA adsorption improved the dispersibilty of ZnO:Cu nanoparticles.  相似文献   

17.
Change of α-helical structure of heme protein (Hb) to a β-sheet and random coil conformation because of the interaction of glycine capped gold nanoparticles (20–60 nm) as observed from attenuation total reflectance, absorption, Fourier transform infra red, and Circular Dichroism spectroscopy has been reported in this article. Upon interaction, protein takes a cylindrical shape of length 12 μm and diameter 0.35 μm as revealed from scanning electron microscopy and transmission electron microscopy. The Selected-Area Electron beam Diffraction pattern shows change of crystalline structure in GNP to amorphous nature with the interaction of Hb.  相似文献   

18.
In the present study, we have explored anti-tumor potent Crocus sativus (saffron) as a reducing agent for one pot size controlled green synthesis of gold nanoparticles (AuNps) at ambient conditions. The nanoparticles were characterized using UV–vis, scanning electron microscope (SEM), high resolution transmission electron microscopy (HRTEM), X-ray diffraction (XRD) and FTIR analysis. The prepared AuNPs showed surface Plasmon resonance centered at 549 nm with average particle size of 15±5 nm. Stable, spherical and triangular crystalline AuNPs with well-defined dimensions were synthesized using anti-tumor potent Crocus sativus (saffron). Crystalline nature of the nanoparticles is confirmed from the HR-TEM, SAED and SEM images, and XRD patterns. From the FTIR spectra it is found that the biomolecules are responsible for capping in gold nanoparticles.  相似文献   

19.
Here, the structuring of surfaces with gold nanoparticles by using Bessel‐like beam array is demonstrated. The experimental results show that the fabricated microring structures containing gold nanoparticles have a surface plasmon resonance in the spectral range of 520–540 nm, which can be tuned by selecting the laser treatment parameters. Fabricated microring structures exhibit a lower light transmittance comparing with the randomly distributed gold nanoparticles for wavelengths 500–570 nm due to the growth in the size of nanoparticles. In the spectral range of 600–700 nm, the light transmittance through microring structures is higher compared with the randomly distributed gold nanoparticles because of the removal of gold nanoparticles as gold has high reflectivity for wavelengths longer than 600 nm. The demonstrated method enables an easy fabrication of microring structures having tunable plasmonic properties.  相似文献   

20.
Industrial and medical applications for gold nanoparticles are extensive, yet highly dependent on their chemical and structural properties. Thus, harnessing the size and shape of nanoparticles plays an important role in nanoscience and nanotechnology. Anisotropic polyhedra and nanoplates were biosynthesized via reduction of 3 mM AuCl4 solution at room temperature. Alfalfa biomass extracts prepared in water and in isopropanol separately were used as reducing agents at pH 3.5 and 3.0, respectively. Nanoparticles observed in the isopropanol extract presented a size range of 30–60 nm, and the morphologies present included 30 nm decahedra and 15 nm icosahedra. Gold nanoplates produced in the water extract were mainly triangular, ranging from 500 nm to 4 μm in size. The resulting nanoparticles and nanoplates can be potentially used in the study of their unique physical properties and for the mechanisms of formation using alfalfa biomass extracts.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号