首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
盛政明  P.Zhang  N.Saleh  S.CHEN  D.Umstadter 《物理》2004,33(6):400-403
文章介绍了相干交叉传播的相对论强激光在与等离子体相互作用中产生的能量交换、瞬态电子密度调制和激光加速电子,这些被加速的电子先在交叉光场中被捕获,随后又注入到等离子体波中,获得进一步的加速.这些现象最近在作者的实验研究和数值模拟中被观察到.  相似文献   

2.
张军  张杰  陈清  彭练矛  苍宇  王怀斌  仲佳勇 《物理学报》2002,51(8):1764-1767
利用高强度超短脉冲激光与铝靶相互作用可以产生高能超热电子,这些超热电子入射到铝单晶上时将发生衍射.对高强度超短脉冲激光产生的超热电子与晶体的相互作用产生衍射及利用这样的衍射进行晶体结构分析的可行性进行了探讨 关键词: 等离子体 超热电子 衍射 晶体  相似文献   

3.
采用飞秒激光辐照铜靶,利用电子角分布仪和LiF热释光探测器测量了快电子发射的发散角.实验结果显示,快电子的发散角与激光入射角密切相关,随着激光入射角增加,快电子的发散角逐渐减小.在相同入射角条件下,加上预脉冲将导致快电子的发散角变小.这个结果为获取较小发散角的快电子束提供了实验参考.  相似文献   

4.
Hot electrons are generated in the interaction between intense ultrashort laser pulses with targets. The process depends on the laser intensity, polarization, incident angle, scale length of plasmas and target materials. In this paper, the recent progress on generation and propagation of hot electrons in non-relativistic and relativistic laser-plasma interactions at the Institute of Physics, Chinese Academy of Sciences, are reviewed.  相似文献   

5.
Lasers are becoming a more and more important tool in cutting and shaping materials. Improving precision and effectivity is an ongoing demand in science and industry. One possibility is double pulses. Here, we study laser ablation of aluminum by the two-temperature model. There the laser is modeled as a source in a continuum heat conduction equation for the electrons, whose temperature then is transferred to a molecular dynamics particle model by an electron–phonon coupling term. The melting and ablation effectivity is investigated depending on the relative intensity and the time delay between two Gaussian shaped laser pulses. It turns out that at least for aluminum the optimal pulse shapes are standard Gaussian pulses. For double pulses with delay times up to 200 ps, we find a behavior as observed in experiment: The ablation depth decreases beyond a delay of 10 ps even if one does not account for the weakening at the second pulse due to laser–plasma interaction.  相似文献   

6.
The results of a theoretical analysis of the generation of broadband radiation in the infrared and terahertz spectral ranges upon the excitation of plasma in air by two femtosecond pulses at the fundamental and second-harmonic frequencies of a Ti-sapphire laser are presented. It is found that the appearance of long-wavelength radiation in a strong field of pulses of different frequencies can be described in terms of strongly anharmonic oscillations of optical electrons, whereby electrons are pulled far away from their atoms; these oscillations are accompanied by cascade transitions of electrons from their ground state to a bound excited state, followed by a transition to the continuum. It is shown that the generated infrared and terahertz radiation appears in the form of pulses containing a few oscillations of the light field. The efficiency of terahertz generation varies periodically with an increase in the interaction length of the femtosecond pulses of different frequencies.  相似文献   

7.
We describe how correlations between electrons can be used to trace the dynamics of correlated two-electron ionization with attosecond precision, without using attosecond pulses. The approach is illustrated using the example of Auger or Coster-Kronig decay triggered by photoionization with an extreme ultraviolet pulse. It requires correlated measurements of angle-resolved energy spectra of both the photo- and Auger electrons in the presence of a laser pulse. To reconstruct the dynamics, we use not only classical time and energy correlation, but also entanglement between the two electrons.  相似文献   

8.
Studies of phenomena accompanying the interaction of superstrong electromagnetic fields with matter, in particular, the generation of an electron–positron plasma, acceleration of electrons and ions, and the generation of hard electromagnetic radiation are briefly reviewed. The possibility of using thin films to initiate quantum electrodynamics cascades in the field of converging laser pulses is analyzed. A model is developed to describe the formation of a plasma cavity behind a laser pulse in the transversely inhomogeneous plasma and the generation of betatron radiation by electrons accelerated in this cavity. Features of the generation of gamma radiation, as well as the effect of quantum electrodynamics effects on the acceleration of ions, at the interaction of intense laser pulses with solid targets are studied.  相似文献   

9.
For the interpretation of experiments for acceleration of electrons at interaction up to nearly GeV energy in laser produced plasmas, we present a new model using interaction magnetic fields. In addition to the ponderomotive acceleration of highly relativistic electrons at the interaction of very short and very intense laser pulses, a further acceleration is derived from the interaction of these electron beams with the spontaneous magnetic fields of about 100 MG. This additional acceleration is the result of a laser-magnetic resonance acceleration (LMRA) around the peak of the azimuthal magnetic field. This causes the electrons to gain energy within a laser period. Using a Gaussian laser pulse, the LMRA acceleration of the electrons depends on the laser polarization. Since this is in the resonance regime, the strong magnetic fields affect the electron acceleration considerably. The mechanism results in good collimated high energetic electrons propagating along the center axis of the laser beam as has been observed by experiments and is reproduced by our numerical simulations. PACS 41.75.Jv; 52.38.Kd; 52.65.Cc  相似文献   

10.
Shi L  Li W  Wang Y  Lu X  Ding L  Zeng H 《Physical review letters》2011,107(9):095004
Efficient nonlinear Bragg diffraction was observed as an intense infrared femtosecond pulse was focused on a plasma grating induced by interference between two ultraviolet femtosecond laser pulses in air. The preformed electrons inside the plasma grating were accelerated by subsequent intense infrared laser pulses, inducing further collisional ionization and significantly enhancing the local electron density.  相似文献   

11.
王传敏  吴锦雷  夏宗炬  邹英华 《物理学报》1996,45(12):2073-2081
利用飞秒脉冲激光和泵浦 探测技术测量了金属超微粒子 半导体复合薄膜Ag-BaO的瞬态光学透过率随延迟时间的变化曲线,观察到了薄膜对光的吸收漂白现象,并在不到2ps时间内恢复.该现象是薄膜中金属超微粒子内费密能级附近电子被飞秒激光脉冲激发,产生非平衡电子而经历瞬态弛豫造成的.弛豫主要包括非平衡电子越过超微粒子和周围介质的界面位垒进入周围介质,以及非平衡电子同晶格和界面的散射两种过程.超微粒子粒径的差别会引起非平衡电子弛豫时间的差别 关键词:  相似文献   

12.
鲁欣  奚婷婷  李英竣  张杰 《物理学报》2004,53(10):3404-3408
对超短超强激光脉冲在大气中传播时形成的电离通道的寿命进行了理论研究.综合考虑了通道中自由电子,正离子,负离子的复合,自由电子和中性分子的吸附以及在后续 激光作用下的退吸附过程.推导出了退吸附激光强度恒定时通道中带电离子密度的速率方程 的解析解.计算结果表明,通过引入退吸附激光抑制电子和中性分子的吸附作用能够在微秒 的时间尺度上将电子密度维持在1012—1013cm-3的水平,在相同的波长 和平均功率下,短脉冲序列的退吸附效果要略好于连续激光 关键词: 等离子体通道 复合 吸附 退吸附 寿命  相似文献   

13.
We present the first observation of Thomson-backscattered light from laser-accelerated electrons. In a compact, all-optical setup, the "photon collider," a high-intensity laser pulse is focused into a pulsed He gas jet and accelerates electrons to relativistic energies. A counterpropagating laser probe pulse is scattered from these high-energy electrons, and the backscattered x-ray photons are spectrally analyzed. This experiment demonstrates a novel source of directed ultrashort x-ray pulses and additionally allows for time-resolved spectroscopy of the laser acceleration of electrons.  相似文献   

14.
Femtosecond far-infrared radiation pulses in the THz spectral range were observed as a consequence of the energy modulation of 1.7 GeV electrons by femtosecond laser pulses in the BESSY storage ring in order to generate femtosecond x-ray pulses ("femtoslicing"). In addition to being crucial for diagnostics of the laser-electron interaction, the THz radiation itself is useful for experiments where intense ultrashort THz pulses of well-defined temporal and spectral characteristics are required.  相似文献   

15.
We propose a mechanism that leads to efficient acceleration of electrons in plasma by two counterpropagating laser pulses. It is triggered by stochastic motion of electrons when the laser fields exceed some threshold amplitudes, as found in single-electron dynamics. It is further confirmed in particle-in-cell simulations. In vacuum or tenuous plasma, electron acceleration in the case with two colliding laser pulses can be much more efficient than with one laser pulse only. In plasma at moderate densities, such as a few percent of the critical density, the amplitude of the Raman-backscattered wave is high enough to serve as the second counterpropagating pulse to trigger the electron stochastic motion. As a result, even with one intense laser pulse only, electrons can be heated up to a temperature much higher than the corresponding laser ponderomotive potential.  相似文献   

16.
Ultrashort high-energy electron beams are generated by focusing fs Ti:sapphire laser pulses on a thin metal tape at normal incidence. At laser intensities above 1016 W/cm2 , the fs laser plasma ejects copious amounts of electrons in a direction parallel to the target surface. These electrons are directly detected by means of a backside illuminated X-ray CCD, and their energy spectrum is determined with an electrostatic analyzer. The electrons were observed for two laser polarization directions, parallel and perpendicular to the observation direction. At the maximum applied intensity of 2×1017 W/cm2, the energy distribution peaks at around 35 keV with a hot tail detectable up to about 300 keV. The number of electrons per shot at 35 keV is about 5×108 per sterad per keV. Quasi-monoenergetic electron pulses with a relative energy spread of 1% were produced by using a 50-m slit in the beam path after the analyzer. This approach offers great potential for time-resolved studies of plasma, liquid, and surface structures with atomic-scale spatial resolution. PACS 41.75.Fr; 52.38.Kd; 52.70.Nc  相似文献   

17.
Electron jets produced in the intermediate intensity range of 1015 to 1017 W/cm2 from submillijoule 120 fs Ti:Sapphire laser pulses focused to spots of a few microns in diameter have been characterized. The experimental results show strong emission of hot electrons with energies from 80 keV to above 250 keV from microplasmas created with both p- and s-polarized 250 μJ laser pulses. The electron jets with energies above 250 keV are observed to be highly directional. The electron jets are observed in the plane of polarization of the laser electric field for both p- and s-polarized laser pulses. The hot electrons emitted from these femtosecond laser plasmas have also been used for radiographic imaging. It is expected that the short initial duration of these electron pulses would make them useful for time resolved applications. PACS 41.75. Fr; 52.38.Kd; 52.70.Nc  相似文献   

18.
The molecular wake-assisted interaction between two collinear femotosecond laser pulses is investigated in air,which leads to the generation of a controllable 1.8 mJ super-continuum pulse with an elongated self-guided channel due to the cross-phase modulation of the impulsively aligned diatomic molecules in air. For two parallel launched femtosecond laser pulses with a certain spatial separation,controllable attraction and repulsion of the pulses are observed due to the counter-balance among molecular wakes,Kerr and plasma effects,where the molecular wakes show a longer interaction distance than the others to control the propagation of the intense ultrashort laser pulses.  相似文献   

19.
影响单电子非线性汤姆孙散射因素的研究   总被引:3,自引:2,他引:1       下载免费PDF全文
郑君  盛政明  张杰  魏志义  余玮 《物理学报》2005,54(3):1018-1035
应用电子汤姆孙散射的经典理论,通过理论分析和计算机模拟,研究了超短超强激光脉冲作用下电子产生的辐射脉冲的性质.计算表明,在这种情况下,电子的辐射通常以阿秒脉冲列的形式出现.讨论了不同激光场参数(包括激光强度、脉宽、初相位和偏振态)、不同电子初始状态(初始速度和位置)对辐射脉冲的时间和空间特性的影响.通常在相对论光强条件下,激光强度越大,电子辐射越强,脉宽越窄,中心频率越大,并且方向性越好;电子在线偏振激光中产生的辐射效率,比在同样强度下圆偏振激光中产生的效率更高;无论入射光是线偏振光,还是圆偏振光,辐射场呈现较复杂的偏振态, 并且它与辐射方向有关.当电子具有一定的初始能量时,通常辐射场的振幅随电子初始能量的增大而增大.不管电子的初始能量以及运动方向如何,做相对论运动的电子产生的辐射趋向于出现在靠近电子运动方向的角度区域.  相似文献   

20.
The effect of intense x-ray laser interaction on argon clusters is studied theoretically with a mixed quantum/classical approach. In comparison to a single atom we find that ionization of the cluster is suppressed, which is in striking contrast to the observed behavior of rare-gas clusters in intense optical laser pulses. We have identified two effects responsible for this phenomenon: A high space charge of the cluster in combination with a small quiver amplitude and delocalization of electrons in the cluster. We elucidate their impact for different field strengths and cluster sizes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号