首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 531 毫秒
1.
The kinetic data published on phosphotriesterase (PTE), with various complexed metals, clearly indicates that the P=O and P=S bonds of phosphotriester and thiophosphotriester substrates, respectively, are strongly polarized by one or both of the active site complexed metal ions. However, this observation is not consistent with the three-dimensional X-ray crystal structure of zinc-substituted PTE with active site bound substrate analogue diethyl 4-methylbenzylphosphonate. In this structure, the distance between the phosphoryl oxygen and the nearest zinc is 3.4 A, a distance too large to afford strong polarization. In the present paper, the geometry and mobility of various PTE active site-substrate complexes are examined by performing both molecular dynamics (MD) simulations and quantum mechanical calculations. Two known substrates are considered, paraoxon and sarin, although their turnover rates vary about 100-fold. The results indicate that PTE forms a complex with either substrate in which the phosphoryl oxygen becomes strongly coordinated with the less buried zinc atom. It is shown that the geometry of the active site is changed when the protein is immersed in a water bath and relaxed by MD. The most substantial conformational change is the opening of the gateway in a pocket where the location of the leaving group is expected. The opening is observed for the pure enzyme as well as for the enzyme/substrate complexes and it ranges from 11 to 18 A. It is also shown that the pockets, in which the substrate substituents are localized, exhibit different flexibility and interact with the substrate with coordinated conformational adjustments.  相似文献   

2.
侯廷军  章威  徐筱杰 《化学学报》2002,60(2):221-227
采用基于线性响应近似的自由能计算方法计算了一类hydroxamate抑制剂和MMP-2的绝对结合自由能。计算中,催化锌离子和MMP-2以及配体之间采用了非键模型。分子动力学模拟结果显示,采用非键模型时,催化Zn离子采用五配位的形式,但配位键的形式和初始结构比较有很大的差别。通过拟合,分别得到了单参数、双参数以及三参数的自由能预测模型,其中,含有常数校正项的三参数模型具有最佳的预测能力,预测自由能和实际自由能之间平均绝对误差仅为2.38kJ/mol。  相似文献   

3.
The prevalence of Mg2+ ions in biology and their essential role in nucleic acid structure and function has motivated the development of various Mg2+ ion models for use in molecular simulations. Currently, the most widely used models in biomolecular simulations represent a nonbonded metal ion as an ion‐centered point charge surrounded by a nonelectrostatic pairwise potential that takes into account dispersion interactions and exchange effects that give rise to the ion's excluded volume. One strategy toward developing improved models for biomolecular simulations is to first identify a Mg2+ model that is consistent with the simulation force fields that closely reproduces a range of properties in aqueous solution, and then, in a second step, balance the ion–water and ion–solute interactions by tuning parameters in a pairwise fashion where necessary. The present work addresses the first step in which we compare 17 different nonbonded single‐site Mg2+ ion models with respect to their ability to simultaneously reproduce structural, thermodynamic, kinetic and mass transport properties in aqueous solution. None of the models based on a 12‐6 nonelectrostatic nonbonded potential was able to reproduce the experimental radial distribution function, solvation free energy, exchange barrier and diffusion constant. The models based on a 12‐6‐4 potential offered improvement, and one model in particular, in conjunction with the SPC/E water model, performed exceptionally well for all properties. The results reported here establish useful benchmark calculations for Mg2+ ion models that provide insight into the origin of the behavior in aqueous solution, and may aid in the development of next‐generation models that target specific binding sites in biomolecules. © 2015 Wiley Periodicals, Inc.  相似文献   

4.
Phosphotriesterase (PTE) is a binuclear zinc enzyme that catalyzes the hydrolysis of extremely toxic organophosphate triesters. In the present work, we have investigated the reaction mechanism of PTE using the hybrid density functional theory method B3LYP. We present a potential energy surface for the reaction and provide characterization of the transition states and intermediates. We used the high resolution crystal structure to construct a model of the active site of PTE, containing the two zinc ions and their first shell ligands. The calculations provide strong support to an associative mechanism for the hydrolysis of phosphotriesters by PTE. No protonation of the leaving group was found to be necessary. In particular, the calculations demonstrate that the nucleophilicity of the bridging hydroxide is sufficient to be utilized in the hydrolysis reaction, a feature that is of importance for a number of other di-zinc enzymes.  相似文献   

5.
A theoretical study on the alkaline hydrolysis of paraoxon, one of the most popular organophosphorus pesticides, in aqueous solution and in the active site of Pseudomonas diminuta phosphotriesterase (PTE) is presented. Simulations by means of hybrid quantum mechanics/molecular mechanics (QM/MM) potentials show that the hydrolysis of paraoxon takes place through an A(N)D(N) or associative mechanism both in solution and in the active site of PTE. The results correctly reproduce the magnitude of the activation free energies and can be used to rationalize the observed kinetic isotope effects (KIEs) for the hydrolysis of paraoxon in both media. Enzymatic hydrolysis of O,O-diethyl p-chlorophenyl phosphate, a phosphotriester having a leaving group with higher pK(a) than paraoxon, was also simulated. Hydrolysis of this phosphotriester by PTE follows a A(N)+D(N) mechanism with a pentacoordinate intermediate. Moreover, the leaving group of this new substrate coordinates to one of the zinc ions of the bimetallic active site in order to stabilize the large negative charge developed on the oxygen atom of the leaving group when the P-O bond is broken in the products state. To accommodate this new ligand in the coordination shell, carbamylated Lys169 must be displaced from one zinc ion to the other, which in turn affects the acidity of Asp301, a residue originally bound to the second zinc ion. This ability to displace some of the ligands of the coordination shell of the zinc centers would explain the promiscuity of this enzyme, which is capable of catalyzing hydrolysis of different substrate by means of different mechanisms.  相似文献   

6.
We characterize the double‐faced nature of hydrogen bonding in hydroxy‐functionalized ionic liquids by means of neutron diffraction with isotopic substitution (NDIS), molecular dynamics (MD) simulations, and quantum chemical calculations. NDIS data are fit using the empirical potential structure refinement technique (EPSR) to elucidate the nearest neighbor H???O and O???O pair distribution functions for hydrogen bonds between ions of opposite charge and the same charge. Despite the presence of repulsive Coulomb forces, the cation–cation interaction is stronger than the cation–anion interaction. We compare the hydrogen‐bond geometries of both “doubly charged hydrogen bonds” with those reported for molecular liquids, such as water and alcohols. In combination, the NDIS measurements and MD simulations reveal the subtle balance between the two types of hydrogen bonds: The small transition enthalpy suggests that the elusive like‐charge attraction is almost competitive with conventional ion‐pair formation.  相似文献   

7.
Molecular dynamics (MD) simulations using a many-body polarizable force field were performed on ethylene carbonate (EC) doped with lithium bistrifluoromethanesulfonamide (LiTFSI) salt as a function of temperature and salt concentration. At 313 K Li+ was coordinated by 2.7-3.2 EC carbonyl oxygen atoms and 0.67-1.05 TFSI- oxygen atoms at EC:Li = 10 and 20 salt concentrations. In completely dissociated electrolytes, however, Li+ was solvated by approximately 3.8 carbonyl oxygen atoms from EC on average. The probability of ions to participate ion aggregates decreased exponentially with an increase in the size of the aggregate. Ion and solvent self-diffusion coefficients and conductivity predicted by MD simulations were in good agreement with experiments. Approximately half of the charge was transported by charged ion aggregates with the other half carried by free (uncomplexed by counterion) ions. Investigation of the Li+ transport mechanism revealed that contribution from the Li+ diffusion together with its coordination shell to the total Li+ transport is similar to the contribution arising from Li+ exchanging solvent molecules in its first coordination shell with solvents from the outer shells.  相似文献   

8.
Herein, we present results from MD simulations of the Michaelis complex formed between the dizinc beta-lactamase from B. fragilis and imipenem. We considered two catalytically important configurations, which differ in the presence or absence of a hydroxide bridge connecting the two zinc ions in the active site. The structural and dynamical effects induced by substrate binding, the specific roles of the conserved residues and the zinc-bound water molecules, the near attack conformers of the Michaelis complex, and so forth, are discussed in detail. The relative stability of the two configurations was estimated from QM linear scaling calculations on the enzyme-substrate complex combined with Poisson-Boltzmann electrostatic calculations and normal mode calculations. Importantly, we find that the two configurations have similar energies, indicating that these two structures could readily be interchanged, thereby facilitating catalysis. The configuration with the hydroxide bound to the two zinc ions is predicted to be the resting form of the enzyme, while the configuration without the bridge is the reactive form that was found to place the hydroxide in position to attack the carbonyl of the beta-lactam ring. Thus, we propose that the enzyme initiates catalysis by converting from the hydroxide bridge form into the configuration that lacks the hydroxide bridge. This interconversion increases the nucleophilicity of the hydroxide ion and exposes it to the beta-lactam carbonyl, which ultimately facilitates nucleophilic attack. The implications of the observed modes of binding, the possible influence of mutating the Lys184 and Asn193 residues on substrate binding, and the reaction mechanism are also discussed in detail.  相似文献   

9.
Deprotonation of [Et(3)NH][C(5)(CN)(5)] with metal bases provides a very simple approach to coordination compounds containing the pentacyanocyclopentadienide anion [C(5)(CN)(5)](-) (1). The three-dimensional polymer [Na(thf)(1.5)(1)](∞) and the molecular dimer [{(tmeda)(2)Na(1)}(2)] are obtained by reaction of this precursor with NaH in the presence of thf or tmeda (Me(2)NCH(2)CH(2)NMe(2)). Their single-crystal X-ray structures both reveal σ-bonded C≡N-Na arrangements and π stacking between [C(5)(CN)(5)](-) ions. DFT calculations on the [C(5)(CN)(5)](-) ion have been used to investigate the structures and bonding in [Na(thf)(1.5)(1)](∞) and [{(tmeda)(2)Na(1)}(2)]. The absence of π bonding of the metal ions in both complexes is due to dispersion of the negative charge from the C(5) ring unit to the C[triple chemical bond]N groups in the [C(5)(CN)(5)](-) ion, making the coordination chemistry of this anion distinctly different from that of cyclopentadienide C(5)H(5)(-).  相似文献   

10.
For accurate classical molecular dynamics (MD) simulations of the calcium mediated bound complexes of annexin and membrane we have developed new force-field parameters correctly describing the interaction of the Ca ion with its environment. We have used quantum chemical calculations to investigate the potential energy surface experienced by the Ca ion within the three different binding sites found in domain 1 of annexin V (ANX V/1). Based on these calculations we were able to quantify the charge polarization of atoms within the binding sites, and to determine the geometry and force constants of harmonic restraints between the Ca ion and its coordinating oxygen atoms. Harmonic restraints were introduced to compensate for the deviations between the quantum mechanical potential energy surface and that of the classical force field. Our analysis has shown that using the refined force field for the Ca binding sites enables long-time MD simulations that conserve the initial structure of ANX V/1 significantly better than MD simulations using the standard force field.  相似文献   

11.
12.
Ab initio-based charge partitioning of ionic systems results in ions with non-integer charges. This charge-transfer (CT) effect alters both short- and long-range interactions. Until recently, the effects of CT have been mostly neglected in molecular dynamics (MD) simulations. The method presented in this paper for including charge transfer between ions and water is consistent with ab initio charge partitioning and does not add significant time to the simulation. The ions of sodium, potassium, and chloride are parameterized to reproduce dimer properties and aqueous structures. The average charges of the ions from MD simulations (0.900, 0.919, and -0.775 for Na(+), K(+), and Cl(-), respectively) are consistent with quantum calculations. The hydration free energies calculated for these ions are in agreement with experimental estimates, which shows that the interactions are described accurately. The ions also have diffusion constants in good agreement with experiment. Inclusion of CT results in interesting properties for the waters in the first solvation shell of the ions. For all ions studied, the first shell waters acquire a partial negative charge, due to the difference between water-water and water-ion charge-transfer amounts. CT also reduces asymmetry in the solvation shell of the chloride anion, which could have important consequences for the behavior of chloride near the air-water interface.  相似文献   

13.
14.
The parametrization of classical nonbonded models of metal ions has been widely addressed in the recent years. Despite the continuous development of novel and more physically inspired functional forms, the 12-6 Lennard-Jones plus Coulomb potential is still the most adopted force field in molecular dynamics (MD) codes, owing to its simple form and easy implementation. However, due to the integer formal charge, unpolarizable force fields of ions may suffer from overestimated interatomic electrostatic interactions, leading to nonphysical clustering or repulsion between such full charges. The electronic continuum correction (ECC) can fix this problem through a simple inclusion of solvent polarization effects via ionic charge rescaling. In this work, the development of novel nonbonded models for mono, divalent, and highly charged metal ions is presented. For each metal species, the ionic charge has been scaled, according to the ECC. Lennard-Jones parameters have been optimized using experimental structural and thermodynamic properties as target quantities. Performances of the proposed models are discussed and compared with the literature data, while transferability attitudes among different and well-known water models are evaluated. © 2019 Wiley Periodicals, Inc.  相似文献   

15.
铜锌金属天然酶活性中心量子化学计算   总被引:2,自引:0,他引:2  
以菠菜叶中天然超氧化物歧化酶(SOD)铜锌活性中心及人为去掉金属锌的活 性中心为模板,运用Gaussian 94量子化学程序,在B3LYP/LANL2DZ基组水平上进行 了计算,获得了分子轨道能量、电荷分布以及原子轨道对前沿分子轨道贡献的信息 。结果表明,金属铜对于催化歧化超氧阴离子O_2~-具有至关重要的作用,而金属 锌起到稳定结构和促成构建活性中心的作用。  相似文献   

16.
Bacterial Gloeobacter violaceus pentameric ligand-gated ion channel (GLIC) is activated to cation permeation upon lowering the solution pH. Its function can be modulated by anesthetic halothane. In the present work, we integrate molecular dynamics (MD) and Brownian dynamics (BD) simulations to elucidate the ion conduction, charge selectivity, and halothane modulation mechanisms in GLIC, based on recently resolved X-ray crystal structures of the open-channel GLIC. MD calculations of the potential of mean force (PMF) for a Na(+) revealed two energy barriers in the extracellular domain (R109 and K38) and at the hydrophobic gate of transmembrane domain (I233), respectively. An energy well for Na(+) was near the intracellular entrance: the depth of this energy well was modulated strongly by the protonation state of E222. The energy barrier for Cl(-) was found to be 3-4 times higher than that for Na(+). Ion permeation characteristics were determined through BD simulations using a hybrid MD/continuum electrostatics approach to evaluate the energy profiles governing the ion movement. The resultant channel conductance and a near-zero permeability ratio (P(Cl)/P(Na)) were comparable to experimental data. On the basis of these calculations, we suggest that a ring of five E222 residues may act as an electrostatic gate. In addition, the hydrophobic gate region may play a role in charge selectivity due to a higher dehydration energy barrier for Cl(-) ions. The effect of halothane on the Na(+) PMF was also evaluated. Halothane was found to perturb salt bridges in GLIC that may be crucial for channel gating and open-channel stability, but had no significant impact on the single ion PMF profiles.  相似文献   

17.
Parameters for the zinc ion have been developed in the self-consistent charge density functional tight-binding (SCC-DFTB) framework. The approach was tested against B3LYP calculations for a range of systems, including small molecules that contain the typical coordination environment of zinc in biological systems (cysteine, histidine, glutamic/aspartic acids, and water) and active site models for a number of enzymes such as alcohol dehydrogenase, carbonic anhydrase, and aminopeptidase. The SCC-DFTB approach reproduces structural and energetic properties rather reliably (e.g., total and relative ligand binding energies and deprotonation energies of ligands and barriers for zinc-assisted proton transfers), as compared with B3LYP/6-311+G** or MP2/6-311+G** calculations.  相似文献   

18.
The first detailed study of the intermolecular hydrogens bonds (H-bonds) within a desolvated, noncovalent protein-ligand complex is reported. Using both experimental and computational methods, the intermolecular H-bonds stabilizing protonated and deprotonated ions of a complex composed of a single chain fragment (scFv) of a monoclonal antibody and its native trisaccharide ligand, alphaGal[alphaAbe] alphaMan (1), are characterized. Using the blackbody infrared radiative dissociation-functional group replacement (BIRD/FGR) technique, three H-bond donor-acceptor pairs within the gaseous (scFv + 1)n+ ions are identified and quantified. Additional sites of interaction on the protein and ligand, for which the binding partner could not be elucidated, are also identified. Comparison of the gas-phase interaction maps with the crystal structure suggests that at least two of the specific H-bonds are conserved upon transfer of the complex from solution to the gas phase by electrospray ionization. However, new (nonspecific) interactions can also form in the gas phase. Notably, the nature and strength of the intermolecular interactions can vary significantly with charge state, and striking differences in the structures of the (scFv + 1)n+ and (scFv + 1)n- ions are evident. Intermolecular H-bonds are also identified from molecular dynamics (MD) simulations performed at the +8 and -8 charge states. Agreement is found for a majority of intermolecular interactions predicted for the (scFv + 1)8+ ion by the MD simulation and BIRD/FGR method; the agreement is less favorable in the case of the (scFv + 1)8- ion. However, both the computational and experimental results point to structural differences between the +8 and -8 ions. The computational results also provide insights into the structural changes that accompany the loss of interfacial waters from the complex.  相似文献   

19.
The ion-molecule reaction, CH(3)CN(+) + CH(3)CN → CH(3)CNH(+) + CH(2)CN, has been investigated using the threshold electron-secondary ion coincidence (TESICO) technique. Relative reaction cross sections for two microscopic reaction mechanisms, i.e., proton transfer (PT) from the acetonitrile ion CH(3)CN(+) to neutral acetonitrile CH(3)CN and hydrogen atom abstraction (HA) by CH(3)CN(+) from CH(3)CN, have been determined for two low-lying electronic states, (2)E and (2)A(1) of the CH(3)CN(+) primary ion. The cross section for PT of the (2)A(1) state was smaller than that of the (2)E state, whereas that of HA are almost the same in the two states. Ab initio calculations showed that the dissociation of the C-H(+) bond of CH(3)CN(+) is easier in the (2)E state than that in the (2)A(1) state. The direct ab initio molecular dynamics (MD) calculations showed that two mechanisms, direct proton transfer and complex formation, contribute the reaction dynamics.  相似文献   

20.
综合运用分子动力学模拟和自由能计算方法研究了苯磺酰胺分子从碳酸酐酶II (CA II)的活性位点脱离过程中底物与酶之间的动态相互作用. 脱离过程的平均力势(PMF)显示, 底物脱离时存在一个特殊的结合状态. 其中, 静电相互作用占据了主导地位. 轨迹分析显示, 除了金属离子的配位作用之外, 底物脱离路径上的关键残基Leu198、Thr199和Thr200通过与底物磺胺基的氢键作用阻碍了底物从酶中的脱离. 当前的研究对于深入认识磺胺类药物与CA II的详细结合过程和相关的药物改良与设计具有重要的指导意义.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号