首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 949 毫秒
1.
Pontes M  Marques JC  Câmara JS 《Talanta》2007,74(1):91-103
The volatile composition from four types of multifloral Portuguese (produced in Madeira Island) honeys was investigated by a suitable analytical procedure based on dynamic headspace solid-phase microextraction (HS-SPME) followed by thermal desorption gas chromatography-quadrupole mass spectrometry detection (GC-qMS). The performance of five commercially available SPME fibres: 100 μm polydimethylsiloxane, PDMS; 85 μm polyacrylate, PA; 50/30 μm divinylbenzene/carboxen on polydimethylsiloxane, DVB/CAR/PDMS (StableFlex); 75 μm carboxen/polydimethylsiloxane, CAR/PDMS, and 65 μm carbowax/divinylbenzene, CW/DVB; were evaluated and compared. The highest amounts of extract, in terms of the maximum signal obtained for the total volatile composition, were obtained with a DVB/CAR/PDMS coating fibre at 60 °C during an extraction time of 40 min with a constant stirring at 750 rpm, after saturating the sample with NaCl (30%). Using this methodology more than one hundred volatile compounds, belonging to different biosynthetic pathways were identified, including monoterpenols, C13-norisoprenoids, sesquiterpenes, higher alcohols, ethyl esters and fatty acids. The main components of the HS-SPME samples of honey were in average ethanol, hotrienol, benzeneacetaldehyde, furfural, trans-linalool oxide and 1,3-dihydroxy-2-propanone.  相似文献   

2.
In the present study, a simple and sensitive methodology based on dynamic headspace solid-phase microextraction (HS-SPME) followed by thermal desorption gas chromatography with quadrupole mass detection (GC-qMSD), was developed and optimized for the determination of volatile (VOCs) and semi-volatile (SVOCs) compounds from different alcoholic beverages: wine, beer and whisky. Key experimental factors influencing the equilibrium of the VOCs and SVOCs between the sample and the SPME fibre, as the type of fibre coating, extraction time and temperature, sample stirring and ionic strength, were optimized. The performance of five commercially available SPME fibres was evaluated and compared, namely polydimethylsiloxane (PDMS, 100 μm); polyacrylate (PA, 85 μm); polydimethylsiloxane/divinylbenzene (PDMS/DVB, 65 μm); carboxen™/polydimethylsiloxane (CAR/PDMS, 75 μm) and the divinylbenzene/carboxen on polydimethylsiloxane (DVB/CAR/PDMS, 50/30 μm) (StableFlex).An objective comparison among different alcoholic beverages has been established in terms of qualitative and semi-quantitative differences on volatile and semi-volatile compounds. These compounds belong to several chemical families, including higher alcohols, ethyl esters, fatty acids, higher alcohol acetates, isoamyl esters, carbonyl compounds, furanic compounds, terpenoids, C13-norisoprenoids and volatile phenols. The optimized extraction conditions and GC-qMSD, lead to the successful identification of 44 compounds in white wines, 64 in beers and 104 in whiskys. Some of these compounds were found in all of the examined beverage samples.The main components of the HS-SPME found in white wines were ethyl octanoate (46.9%), ethyl decanoate (30.3%), ethyl 9-decenoate (10.7%), ethyl hexanoate (3.1%), and isoamyl octanoate (2.7%). As for beers, the major compounds were isoamyl alcohol (11.5%), ethyl octanoate (9.1%), isoamyl acetate (8.2%), 2-ethyl-1-hexanol (5.9%), and octanoic acid (5.5%). Ethyl decanoate (58.0%), ethyl octanoate (15.1%), ethyl dodecanoate (13.9%) followed by 3-methyl-1-butanol (1.8%) and isoamyl acetate (1.4%) were found to be the major VOCs in whisky samples.  相似文献   

3.
Trans-2-nonenal is an aldehyde contributing to an unpleasant off-flavor and odor of rancid butter in stored beer. The automated solid-phase microextraction technique (SPME) coupled with gas chromatography (GC) and solid-phase dynamic extraction (SPDE) coupled with gas chromatography were optimized and introduced to determine trans-2-nonenal in barley, malt and beer. Five types of SPME fibers coated with different stationary phases (100 μm PDMS, 65 μm PDMS/DVB, 85 μm CAR/PDMS, 50/30 μm DVB/CAR/PDMS, 85 μm PA) and two needles (PDMS, PDMS/AC) were compared and tested for their efficiencies in the headspace (HS) SPME and SPDE determination of trans-2-nonenal in barley, malt and beer. The highest extraction efficiency of HS-SPME was achieved with the PDMS/DVB fiber, and addition of 1.5 g of NaCl, extraction time was 20 min at 60 °C. The highest extraction efficiency of HS-SPDE was obtained with the PDMS needle, 15 extraction strokes at 60 °C and addition of 1.5 g of NaCl. Trans-2-nonenal was identified with the method of HS-SPME coupled gas chromatography-mass spectrometry (GC–MS); the samples were analyzed using the HS-SPME-GC-coupled gas chromatography-flame ionization detector (GC-FID) technique.  相似文献   

4.
A fully automated method has been developed for determining eight macrocyclic musk fragrances in wastewater samples. The method is based on headspace solid-phase microextraction (HS-SPME) followed by gas chromatography–mass spectrometry (GC-MS). Five different fibres (PDMS 7 μm, PDMS 30 μm, PDMS 100 μm, PDMS/DVB 65 μm and PA 85 μm) were tested. The best conditions were achieved when a PDMS/DVB 65 μm fibre was exposed for 45 min in the headspace of 10 mL water samples at 100 °C. Method detection limits were found in the low ng L?1 range between 0.75 and 5 ng L?1 depending on the target analytes. Moreover, under optimized conditions, the method gave good levels of intra-day and inter-day repeatabilities in wastewater samples with relative standard deviations (n?=?5, 1,000 ng L?1) less than 9 and 14 %, respectively. The applicability of the method was tested with influent and effluent urban wastewater samples from different wastewater treatment plants (WWTPs). The analysis of influent urban wastewater revealed the presence of most of the target macrocyclic musks with, most notably, the maximum concentration of ambrettolide being obtained in WWTP A (4.36 μg L?1) and WWTP B (12.29 μg L?1), respectively. The analysis of effluent urban wastewater showed a decrease in target analyte concentrations, with exaltone and ambrettolide being the most abundant compounds with concentrations varying between below method quantification limit (<MQL) and 2.46 μg L?1.
Figure
Scheme of a HS-SPME followed by GC-MS to determine macrocyclic musk fragrances in wastewater samples  相似文献   

5.
In this work, a headspace-solid-phase micro-extraction (HS-SPME) combined with gas chromatography–mass spectrometry (GC–MS) method for multielemental speciation of organometallic compounds of mercury, lead and tin in water samples was upgraded by the introduction of tandem mass spectrometry (MS/MS) as detection technique. The analytical method is based on the ethylation with NaBEt4 and simultaneous headspace-solid-phase micro-extraction of the derivative compounds followed by GC–MS/MS analysis. The main experimental parameters influencing the extraction efficiency such as derivatisation time, extraction time and extraction temperature were optimized. The overall optimum extraction conditions were the following: a 50 μm/30 μm divinyl-benzene/carboxen/polydimethylsiloxane (DVB/CAR/PDMS) SPME fibre, 150 min derivatisation time, 15 min extraction time, sample agitation at 250 rpm and 40 °C extraction temperature. The analytical characteristics of the HS-SPME method combined with GC–MS and GC–MS/MS were evaluated. The combination of both techniques HS-SPME and GC–MS/MS allowed to attain lower limits of detection (4–33 ng l−1) than those obtained by HS-SPME–GC–MS (17–45 ng l−1). The proposed method presented good linear regression coefficients (r2 > 0.9970) and repeatability (4.8–21.0%) for all the compounds under study. The accuracy of the method measured as the average percentage recovery of the compounds in spiked river water and seawater samples was higher than 80% for all the compounds studied, except for monobutyltin in the river water sample. A study of the uncertainty associated with the analytical results was also carried out.  相似文献   

6.
刘敬科  张爱霞  李少辉  赵巍  张玉宗  邢国胜 《色谱》2017,35(11):1184-1191
为全面了解小米黄酒风味成分的构成和气味特征,优化了85μm聚丙烯酸酯(PA)、100μm聚二甲基硅氧烷(PDMS)、75μm碳分子筛(CAR)/PDMS、50/30μm二乙烯基苯(DVB)/CAR/PDMS萃取头提取小米黄酒风味成分的条件,采用顶空固相微萃取(headspace solid phase microextraction,HS-SPME)-气相色谱-质谱法(GC-MS)对风味成分进行定性、定量分析,并计算气味活性值(odor active value,OAV),同时利用OAV分析风味成分的气味特征和气味强度。结果显示:不同萃取头的最优萃取条件为样品量8 mL、萃取时间40 min、萃取温度60℃、NaCl添加量1.5 g。小米黄酒风味成分由醇、酯、含苯化合物、烃、酸、醛、酮、烯、酚和杂环类化合物构成,醇为主要风味成分。通过OAV确定了苯乙醇、苯乙烯、2-甲基萘、1-甲基萘、苯甲醛、苯乙醛、2-甲氧基-苯酚为小米黄酒气味特征成分,苯基乙醇、苯乙醛对气味贡献最大。PA和PDMS萃取头分别对极性和非极性化合物具有较好的吸附效果,CAR/PDMS和DVB/CAR/PDMS萃取头对中等极性化合物具有较好的吸附效果。该研究全面了解了小米黄酒风味成分的构成,为其产品开发及品质控制提供理论了依据。  相似文献   

7.
A method involving headspace-solid phase micro-extraction (HS-SPME), gas chromatography with flame ionization detection (GC-FID) and gas chromatography with mass spectrometry (GC-MS) was developed and optimized to investigate the volatile composition of Capsicum chili peppers. Five SPME fibers were tested for extraction: carboxen/polydimethylsiloxane (CAR/PDMS-75μm), polydimethylsiloxane (PDMS-100μm), divinylbenzene/polydimethylsiloxane (DVB/PDMS-65μm), carbowax/divinylbenzene (CW/DVB-70μm), and divinylbenzene/carboxen/polydimethylsiloxane (DVB/CAR/PDMS-50/30μm), the last of which was shown to be the most efficient fiber to trap the volatile compounds. Optimization of the extraction conditions was carried out using multivariate strategies such as factorial design and response surface methodology. Eighty three compounds were identified by GC-MS when using the optimized extraction conditions, the majority of which were esters.  相似文献   

8.
采用顶空固相微萃取(HS-SPME)与气相色谱/质谱(GC/MS)联用方法对艾叶中易挥发性成分进行了分析,并通过单因素和正交试验对影响HS-SPME的条件进行优化,确定了HS-SPME的最优参数为:50/30μm DVB/CAR/PDMS固相微萃取头、样品用量0.8g、萃取温度75℃、萃取时间50min、平衡时间30min、解吸4min。经GC/MS分析,共检出196种化合物,利用质谱解析结合保留指数定性确定结构132种,占易挥发性成分总量的94.01%。其中主要易挥发性成分是3-氨基吡唑、桉油精、β-杜松烯、顺-β-松油醇、3-甲基-2-丁烯酸-4-硝基苯基酯、3,6,6-三甲基-1,5-庚二烯-4-醇、6-甲基-3-(1-异丙基)-2-环己烯-1-酮、3-甲基-2-丁烯酸环丁酯。本文结果为艾叶易挥发性成分及其开发利用提供了一定的理论依据。  相似文献   

9.
Dynamic headspace solid-phase microextraction (HS-SPME) followed by thermal desorption gas chromatography-quadrupole mass spectrometry analysis (GC-qMS), was used to investigate the aroma profile of different species of passion fruit samples. The performance of five commercially available SPME fibres: 65 μm polydimethylsiloxane/divinylbenzene, PDMS/DVB; 100 μm polydimethylsiloxane, PDMS; 85 μm polyacrylate, PA; 50/30 μm divinylbenzene/carboxen on polydimethylsiloxane, DVB/CAR/PDMS (StableFlex); and 75 μm carboxen/polydimethylsiloxane, CAR/PDMS; was evaluated and compared. Several extraction times and temperature conditions were also tested to achieve optimum recovery. The SPME fibre coated with 65 μm PDMS/DVB afforded the highest extraction efficiency, when the samples were extracted at 50 °C for 40 min with a constant stirring velocity of 750 rpm, after saturating the sample with NaCl (17%, w/v — 0.2 g). A comparison among different passion fruit species has been established in terms of qualitative and semi-quantitative differences in volatile composition. By using the optimal extraction conditions and GC-qMS it was possible to tentatively identify seventy one different compounds in Passiflora species: 51 volatiles in Passiflora edulis Sims (purple passion fruit), 24 in P. edulis Sims f. flavicarpa (yellow passion fruit) and 21 compounds in Passiflora mollissima (banana passion fruit). It was found that the ethyl esters comprise the largest class of the passion fruit volatiles, including 82.8% in P. edulis variety, 77.4% in P. edulis Sims f. flavicarpa variety and 39.9% in P. mollissima.The semi-quantitative results were then submitted to principal component analysis (PCA) in order to establish relationships between the compounds and the different passion fruit species under investigation.  相似文献   

10.
2-Ethyl hexanol from hydrolysed di-octyl-phthalate (DOP) may cause a secondary emission from building products such as PVC carpets and/or glues causing indoor air pollution. In the present study, a micro-scale headspace vial (MHV) method, earlier developed by us, was refined to study the degradation of DOP and di-isononyl phthalate (DINP) in humid and alkaline environments. By HS-SPME it was possible to extract the degradation products at low temperature, 35 °C, which limits the risks of unwanted degradation during sampling. Three different types of HS-SPME fibres were evaluated. The carbowax-divinyl benzene (CW/DVB) fibre had the highest extraction capacity of 2-ethyl-1-hexanol and 5-nonanol. Although significantly shorter extraction times could be used with the 7 μm and 30 μm poly-dimethylsiloxane (PDMS) fibres, the CW/DVB fibre was found to be the most suitable for these alcohols. Furthermore, it was found that pH of the alkaline environment strongly influences the formation of degradation products from DOP and DINP.  相似文献   

11.
Headspace solid-phase microextraction combined with gas chromatography-ion trap tandem mass spectrometry (HS-SPME-GC-ITMS-MS) method has been developed and studied for the simultaneous determination of 15 organochlorine pesticides (OCPs) and 20 polychlorinated biphenyls (PCBs) in aqueous samples. To perform the HS-SPME polydimethylsiloxane (PDMS) (7, 30 and 100 microm film thickness) and polydimethylsiloxane-divinylbenzene (PDMS-DVB) fibers were initially compared on the basis of their absorption capacities for the selected compounds, and PDMS 100 microm film thickness was selected to accomplish the rests of essays. The influence of various parameters on OCPs and PCBs extraction efficiency by HS-SPME was thoroughly studied using GC-electron capture detector (ECD). Parameters such as collision induced dissociation (CID) resonant excitation amplitude and RF storage level were optimized to increase specificity and sensibility for ITMS-MS analysis. The performance of proposed HS-SPME-GC-ITMS-MS methodology with respect to linearity, reproducibility and limit of detection (LOD) was evaluated by water spiked with target compounds. The linear range of most compounds was found to be between 0.01 and 1 ng mL(-1) and the limits of detection were between 0.4 and 26 pg mL(-1). The reproducibility of the method (n = 6), expressed as relative standard deviation (RSD), was between 5 and 21%. Finally, developed procedure was applied to determine selected OCPs and PCBs in river water samples in concentration below 0.1 ng mL(-1) can be easily carried out with ultra-selectivity and precision.  相似文献   

12.
建立了一种快速简便地测定酱油中挥发性风味成分的顶空固相微萃取(HS-SPME)-气相色谱-质谱法(GC-MS)。以2-辛醇为内标,考察了萃取头、萃取时间、离子强度、萃取温度对酱油样品中挥发性风味物质萃取的影响。该方法对酱油中常见挥发性风味成分的测定有良好的重复性和回收率,对常见挥发性物质的定量比较准确。优化的HS-SPME条件为:涂层厚度为85 μm聚丙烯酸酯(PA)萃取纤维头,于45 ℃、NaCl质量浓度为250 g/L下对酱油样品顶空吸附40 min,于250 ℃下解吸2 min后进行GC-MS分离鉴定。酱油样品的分析结果表明,其挥发性风味物质中含量较高的是醇、酸、酯和酚类,此外还有一些羰基化合物和杂环化合物。  相似文献   

13.
The volatile components of yak butter were isolated by solvent-assisted flavour evaporation (SAFE), simultaneous distillation extraction (SDE; dichloromethane and diethyl ether as solvent, respectively) and headspace solid-phase microextraction (HS-SPME; CAR/PDMS, PDMS/DVB and DVB/CAR/PDMS fibre extraction, respectively) and were analysed by GC/MS. A total of 83 volatile components were identified under six different conditions, including 28 acids, 12 esters, 11 ketones, 10 lactones, 10 alcohols, 4 other compounds, 2 aldehydes, 2 unsaturated aldehydes, 1 furan, 1 sulphur-containing compound, 1 unsaturated alcohol and 1 unsatruated ketone. Among them, 51 were identified by SAFE, 58 by SDE (45 with dichloromethane as solvent and 41 with diethyl ether as solvent) and 40 by HS-SPME (26 with CAR/PDMS; 26 with PDMS/DVB and 32 with DVB/CAR/PDMS). Three pretreatment methods were compared to show that the volatile components obtained using different methods varied greatly, both in terms of categories and in content. Therefore, a multi-pretreatment method should be adopted, together with GC/MS. A total of 25 aroma-active compounds were detected by gas chromatography-olfactometry, among which 20 aroma-active compounds were found by SDE (14 with dichloromethane as solvent and 14 with diethyl ether as solvent) and 17 by SAFE.  相似文献   

14.
Several sampling techniques based on steam distillation (SD), simultaneous distillation and solvent extraction (SDE), solid-phase trapping solvent extraction (SPTE), and headspace solid-phase microextraction (HS-SPME) have been compared for the determination of Korean garlic flavor components by gas chromatography–mass spectrometry (GC–MS). Diallyl disulfide (57.88%), allyl sulfide (23.59%), and diallyl trisulfide (11.40%) were found to be the predominant flavor components of garlic samples extracted by SDE whereas these components were at levels of 89.77%, 2.43%, and 3.89% when the same sample was extracted by SD, 97.77%, 0.17%, and 0.10% by SPTE, and 97.85%, 0.01%, and 0.01% by HS-SPME using the 50/30-m divinyl benzene/carboxen/polydimethylsiloxane (DVB/CAR/PDMS) fiber. Thermal degradation of components such as allyl methyl sulfide, dimethyl disulfide, and thiirane were observed for SDE and SD but not for SPTE or HS-SPME. HS-SPME had several advantages compared with SD, SDE, and SPTE—rapid solvent-free extraction, no apparent thermal degradation, less laborious manipulation, and less sample requirement. Five different fiber coatings were evaluated to select a suitable fiber for HS-SPME of garlic flavor components. DVB/CAR/PDMS was most efficient among the five types of fiber investigated.  相似文献   

15.
建立了顶空-固相微萃取(HS-SPME)-气相色谱快速测定可可麦汁中3种吡嗪类物质(2,5-二甲基吡嗪、2,3,5-三甲基吡嗪和2,3,5,6-四甲基吡嗪)的方法.选择不同的固相微萃取头对萃取温度和时间进行优化,所得最佳萃取条件为:在60℃下,采用75 μm CAR/PDMS萃取头对麦汁样品萃取40 min.本方法的检出限(S/N=3)为0.023~ 0.056 μg/L,线性范围1~500 mg/L;相对标准偏差为3.6%~6.4%;回收率为95.4%~102.7%.本方法应用于样品检测,发现可可麦汁中吡嗪的浓度与原料中可可粉的添加量正相关,显示了很好灵敏性.  相似文献   

16.
Headspace solid phase microextraction (HS-SPME) in-situ supercritical fluid extraction (SFE) was investigated for the determination of trace amounts of perfluorocarboxylic acids (PFCAs) in sediments. Quantitation was performed by using gas chromatography coupled to negative chemical ionization-tandem mass spectrometry (GC-NCI-MS/MS). The optimum conditions of HS-SPME following SFE were obtained using 500 μL n-butanol as a derivatization reagent in supercritical carbon dioxide with static extraction for 10 min, then dynamic extraction for 20 min at 30 MPa and 70 °C and simultaneous collected with 100 μm film thickness PDMS fiber. The linear range of proposed method was from 5 to 5000 ng g(-1), with limit of detection ranging from 0.39 to 0.54 ng g(-1) and limit of quantitation ranging from 1.30 to 1.80 ng g(-1). The developed method was successfully applied to analyze PFCAs in sediments from rivers and beach near industrial areas. The concentrations of PFCAs determined are from 282 to 4473 ng g(-1).  相似文献   

17.
A new generation of solid-phase microextraction (SPME) fiber, an internally cooled fiber (cold fiber with polydimethylsiloxane loading) that allows heating the sample matrix and simultaneously cooling the fiber coating, was used to determine 2,4-dichloroanisole, 2,6-dichloroanisole, 2,4,6-trichloroanisole and pentachloroanisole in cork. A comparison between the cold fiber and regular SPME fiber was performed. An automated headspace solid-phase microextraction (HS-SPME) using commercial fibers and an internally cooled SPME fiber (CF-HS-SPME) coupled to gas chromatography-time-of-flight mass spectrometry (GC-TOF-MS) was used. The extraction conditions for both CF-HS-SPME and HS-SPME were optimized using full factorial design and Doehlert matrix. The best extraction conditions for CF-HS-SPME were obtained using 10 min of incubation time, 10 min of extraction time, and sample and fiber temperature of 130 and 10 degrees C, respectively. For HS-SPME, polydimethylsiloxane/divinylbenzene (PDMS/DVB) fiber was used with 10 min of incubation time, 75 min of extraction time, 85 degrees C of sample temperature, 8 ml of water was added and agitated at 500 rpm. The quantification limits for the target compounds using CF-HS-SPME procedure were between 0.8 and 1.6 ng g(-1) of cork, while for HS-SPME were between 4 and 6 ng g(-1) of cork. Furthermore, the CF-HS-SPME procedure could be used as a non-destructive method after minor modification of the agitator for the autosampler.  相似文献   

18.
The simultaneous determination of several odorous trichlorobromophenols in water has been carried out by an in-sample derivatization headspace solid-phase microextraction method (HS-SPME).The analytical procedure involved their derivatization to methyl ethers with dimethyl sulfate/NaOH and further HS-SPME and gas chromatography-mass spectrometry (GC/MS) determination. Parameters affecting both the derivatization efficiency and headspace SPME procedures, such as the selection of the SPME fiber coating, derivatization–extraction time and temperature, were studied. The commercially available polydimethylsiloxane (PDMS) 100 μm and Carboxen-polydimethylsiloxane-divinylbenzene (CAR-PDMS-DVB) fibers appeared to be the most suitable for the simultaneous determination of these compounds. The precision of the HS-SPME/GC/MS method gave good relative standard deviations (RSDs) run-to-run between 9% and 19% for most of them, except for 2,5-diCl-6-Br-phenol, 2,6-diCl-3-Br-phenol and-2,3,6-triBr-phenol (22%, 25% and 23%, respectively). The method was linear over two orders of magnitude, and detection limits were compound dependent but ranged from 0.22 ng/l to 0.95 ng/l. The results obtained for water samples using the proposed SPME procedure were compared with those found with the EPA 625 method, and good agreement was achieved. Therefore, the in-sample derivatization HS-SPME/GC/MS procedure here proposed is a suitable method for the simultaneous determination of odorous trichlorobromophenols in water.  相似文献   

19.
The determination of a group of eighteen pollutants in waters, including polycyclic aromatic hydrocarbons and substituted phenols, is conducted in direct-immersion solid-phase microextraction (SPME) using the polymeric ionic liquid (PIL) poly(1-vinyl-3-hexadecylimidazolium) bis[(trifluoromethyl)sulfonyl]imide as a novel coating material. The performance of the PIL fiber coating in the developed IL-SPME-gas chromatography (GC)–mass spectrometry (MS) method is characterized by average relative recoveries of 92.5% for deionized waters and 90.8% for well waters, average precision values (as relative standard deviations, RSD%) of 11% for deionized waters and 12% for well waters, using a spiked level of 5 ng mL−1. The detection limits oscillate from 0.005 ng mL−1 for fluoranthene to 4.4 ng mL−1 for 4-chloro-3-methylphenol, when using an extraction time of 60 min with 20 mL of aqueous sample. The extraction capabilities of the PIL fiber have been compared with the commercial SPME coatings: polydimethylsyloxane (PDMS) 30 μm, PDMS 100 μm and polyacrylate (PA) 85 μm. The PIL fiber is superior to the PDMS 30 μm for all analytes studied. A qualitative study was also carried out to compare among the nature of the coating materials by normalizing the coating thickness. The PIL material was shown to be more efficient than the PDMS material for all analytes studied. The PIL coating was also adequate for nonpolar analytes whereas the PA material was more sensitive for polar compounds.  相似文献   

20.
J.J. Rios  A. Morales 《Talanta》2010,80(5):2076-180
A solvent-free analytical approach based on headspace solid-phase microextraction (SPME) of oil matrices heated at high temperatures coupled to gas chromatography with mass spectrometry detector (GC-ion trap) has been developed for the determination of phthalic acid esters (PAEs) in oil matrices without sample manipulation. For this study, three fibers, i.e., 85 μm-polyacrylate (PA), 50/30 μm-divinylbenzene-carboxen-polydimethylsiloxane (DVB/CAR/PDMS) and 100 μm-polydimethylsiloxane (PDMS) were tested. Variables affecting the SPME headspace composition such as incubation sample temperature, sample incubation time and fiber exposition time were optimized. The optimal values found were 250 °C for sample incubation temperature and 30 min for incubation and extraction time. PA fiber was not suitable for the lightest polar phthalates which showed poor extraction and repeatability values. PDMS fiber had very poor response for some of the heavier and non-polar phthalates, whereas DVB/CAR/PDMS fiber showed the best response and repeatability values for the majority of the phthalates studied. The main benefit of the analytical method proposed is the absence of sample manipulation and hence avoidance of possible contamination coming from glassware, environment, solvents and samples.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号