首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In this paper, we describe the enantiospecific synthesis and the complete characterization of the two hexacoordinated ruthenium(II) monocations [Ru(bpy)(2)ppy](+) and [Ru(bpy)(2)quo](+) (bpy = 2,2'-bipyridine, ppy = phenylpyridine-H(+), quo = 8-hydroxyquinolate) in their enantiomeric Delta and Lambda forms. The corresponding enantiomeric excesses (ee's) are determined by (1)H NMR using pure Delta-Trisphat (tris(tetrachlorobenzenedialato)phosphate(V) anion) as a chiral (1)H NMR shift reagent. A complete (1)H and (13)C NMR study has been carried out on rac-[Ru(bpy)(2)ppy]PF(6) and rac-[Ru(bpy)(2)quo]PF(6). Additionally, the X-ray molecular structure of rac-[Ru(bpy)(2)quo]PF(6) is reported; this latter species crystallizes in the monoclinic C2/c space group (a = 22.079 A, b = 16.874 A, c = 17.533 A, alpha = 90 degrees, beta = 109.08 degrees, gamma = 90 degrees ).  相似文献   

2.
Seok WK  Meyer TJ 《Inorganic chemistry》2004,43(17):5205-5215
The net six-electron oxidation of aniline to nitrobenzene or azoxybenzene by cis-[Ru(IV)(bpy)(2)(py)(O)](2+) (bpy is 2,2'-bipyridine; py is pyridine) occurs in a series of discrete stages. In the first, initial two-electron oxidation is followed by competition between oxidative coupling with aniline to give 1,2-diphenylhydrazine and capture by H(2)O to give N-phenylhydroxylamine. The kinetics are first order in aniline and first order in Ru(IV) with k(25.1 degrees C, CH(3)CN) = (2.05 +/- 0.18) x 10(2) M(-1) s(-1) (DeltaH(++) = 5.0 +/- 0.7 kcal/mol; DeltaS(++) = -31 +/- 2 eu). On the basis of competition experiments, k(H)2(O)/k(D)2(O) kinetic isotope effects, and the results of an (18)O labeling study, it is concluded that the initial redox step probably involves proton-coupled two-electron transfer from aniline to cis-[Ru(IV)(bpy)(2)(py)(O)](2+) (Ru(IV)=O(2+)). The product is an intermediate nitrene (PhN) or a protonated nitrene (PhNH(+)) which is captured by water to give PhNHOH or aniline to give PhNHNHPh. In the following stages, PhNHOH, once formed, is rapidly oxidized by Ru(IV)=O(2+) to PhNO and PhNHNHPh to PhN=NPh. The rate laws for these reactions are first order in Ru(IV)=O(2+) and first order in reductant with k(14.4 degrees C, H(2)O/(CH(3))(2)CO) = (4.35 +/- 0.24) x 10(6) M(-1) s(-1) for PhNHOH and k(25.1 degrees C, CH(3)CN) = (1.79 +/- 0.14) x 10(4) M(-1) s(-1) for PhNHNHPh. In the final stages of the six-electron reactions, PhNO is oxidized to PhNO(2) and PhN=NPh to PhN(O)=NPh. The oxidation of PhNO is first order in PhNO and in Ru(IV)=O(2+) with k(25.1 degrees C, CH(3)CN) = 6.32 +/- 0.33 M(-1) s(-1) (DeltaH(++) = 4.6 +/- 0.8 kcal/mol; DeltaS(++) = -39 +/- 3 eu). The reaction occurs by O-atom transfer, as shown by an (18)O labeling study and by the appearance of a nitrobenzene-bound intermediate at low temperature.  相似文献   

3.
1 INTRODUCTION The transition metal cluster complexes exhi- biting multistep redox processes have attracted more and more attention because of their potential applications in the areas of photonic and electronic devices[1~4]. The oxo-centered carboxyla…  相似文献   

4.
X-ray crystal structures are reported for the following complexes: [Ru(2)Cl(3)(tacn)(2)](PF(6))(2).4H(2)O (tacn = 1,4,7-triazacyclononane), monoclinic P2(1)/n, Z = 4, a = 14.418(8) ?, b = 11.577(3) ?, c = 18.471(1) ?, beta = 91.08(5) degrees, V = 3082 ?(3), R(R(w)) = 0.039 (0.043) using 4067 unique data with I > 2.5sigma(I) at 293 K; [Ru(2)Br(3)(tacn)(2)](PF(6))(2).2H(2)O, monoclinic P2(1)/a, Z = 4, a = 13.638(4) ?, b = 12.283(4) ?, c = 18.679(6) ?, beta = 109.19(2) degrees, V = 3069.5 ?(3), R(R(w)) = 0.052 (0.054) using 3668 unique data with I > 2.5sigma(I) at 293 K; [Ru(2)I(3)(tacn)(2)](PF(6))(2), cubic P2(1)/3, Z = 3, a = 14.03(4) ?, beta = 90.0 degrees, V = 2763.1(1) ?(3), R (R(w)) = 0.022 (0.025) using 896 unique data with I > 2.5sigma(I) at 293 K. All of the cations have cofacial bioctahedral geometries, although [Ru(2)Cl(3)(tacn)(2)](PF(6))(2).4H(2)O, [Ru(2)Br(3)(tacn)(2)](PF(6))(2).2H(2)O, and [Ru(2)I(3)(tacn)(2)](PF(6))(2) are not isomorphous. Average bond lengths and angles for the cofacial bioctahedral cores, [N(3)Ru(&mgr;-X)(3)RuN(3)](2+), are compared to those for the analogous ammine complexes [Ru(2)Cl(3)(NH(3))(6)](BPh(4))(2) and [Ru(2)Br(3)(NH(3))(6)](ZnBr(4)). The Ru-Ru distances in the tacn complexes are longer than those in the equivalent ammine complexes, probably as a result of steric interactions.  相似文献   

5.
Voltammetric, photo-physical and photo-electrochemical properties of the Dawson polyoxometalate anions alpha-[S(2)M(18)O(62)](4-) (M = Mo, W) are presented, both in the presence and absence of a series of [Ru(II)L(n)](+/2+) cations [L(n) = (bpy)(3), (bpy)(2)(Im)(2), (bpy)(2)(dpq), (bpy)(2)(box) and (biq)(2)(box)]. Electrochemical processes for both the anion and Ru(II/III) couples were detected in solutions of the salts [Ru(II)L(n)](2)[S(2)M(18)O(62)] in dimethylformamide (0.1 M Bu(4)NPF(6)) by both cyclic and hydrodynamic voltammetries. Responses were also detected when the solid salts were adhered to the surface of a glassy carbon electrode in contact with an electrolyte in which they are insoluble (CH(3)CN; 0.1M Bu(4)NPF(6)). Photolysis experiments were performed on solutions of the salts [R(4)N](4)[S(2)M(18)O(62)] (R = n-butyl or n-hexyl) and [Ru(II)L(n)](2)[S(2)M(18)O(62)] at 355 and 420 nm in dimethylformamide and acetonitrile in the presence and absence of benzyl alcohol (10% v/v). When associated with [Ru(bpy)(3)](2+), the molybdate anion exhibited a large increase in the quantum yield for photo-reduction at 420 nm. The quantum yield for the tungstate analogue was lower but the experiments again provided clear evidence for sensitization of the photo-reduction reaction in the visible spectral region. The origin of this sensitization is ascribed to the new optical transition observed around 480 nm in static ion clusters {[Ru(bpy)(3)][S(2)M(18)O(62)]}(2-) and {[Ru(bpy)(3)](2)[S(2)M(18)O(62)]} present in solution. Measurable photocurrents resulted from irradiation of solutions of the anions with white light in the presence of the electron donor dimethylformamide. Evidence is also presented for possible quencher-fluorophore interactions in the presence of certain [Ru(II)L(n)](+) cations.  相似文献   

6.
We report a high yield, two-step synthesis of fac-[Ru(bpy)(CH3CN)3NO2]PF6 from the known complex [(p-cym)Ru(bpy)Cl]PF6 (p-cym = eta(6)-p-cymene). [(p-cym)Ru(bpy)NO2]PF6 is prepared by reacting [(p-cymene)Ru(bpy)Cl]PF6 with AgNO3/KNO2 or AgNO2. The 15NO2 analogue is prepared using K15NO2. Displacement of p-cymene from [(p-cym)Ru(bpy)NO2]PF6 by acetonitrile gives [Ru(bpy)(CH3CN)3NO2]PF6. The new complexes [(p-cym)Ru(bpy)NO2]PF6 and fac-[Ru(bpy)(CH3CN)3NO2]PF6 have been fully characterized by 1H and 15N NMR, IR, elemental analysis, and single-crystal structure determination. Reaction of [Ru(bpy)(CH3CN)3NO2]PF6 with the appropriate ligands gives the new complexes [Ru(bpy)(Tp)NO2] (Tp = HB(pz)3-, pz = 1-pyrazolyl), [Ru(bpy)(Tpm)NO2]PF6 (Tpm = HC(pz)3), and the previously prepared [Ru(bpy)(trpy)NO2]PF6 (trpy = 2,2',6',2' '-terpyridine). Reaction of the nitro complexes with HPF6 gives the new nitrosyl complexes [Ru(bpy)TpNO][PF6]2 and [Ru(bpy)(Tpm)NO][PF6]3. All complexes were prepared with 15N-labeled nitro or nitrosyl groups. The nitro and nitrosyl complexes were characterized by 1H and 15N NMR and IR spectroscopy, elemental analysis, cyclic voltammetry, and single-crystal structure determination for [Ru(bpy)TpNO][PF6]2. For the nitro complexes, a linear correlation is observed between the nitro 15N NMR chemical shift and 1/nu(asym), where nu(asym) is the asymmetric stretching frequency of the nitro group.  相似文献   

7.
Seok WK  Meyer TJ 《Inorganic chemistry》2005,44(11):3931-3941
The oxidation of benzaldehyde and several of its derivatives to their carboxylic acids by cis-[Ru(IV)(bpy)2(py)(O)]2+ (Ru(IV)=O2+; bpy is 2,2'-bipyridine, py is pyridine), cis-[Ru(III)(bpy)2(py)(OH)]2+ (Ru(III)-OH2+), and [Ru(IV)(tpy)(bpy)(O)]2+ (tpy is 2,2':6',2'-terpyridine) in acetonitrile and water has been investigated using a variety of techniques. Several lines of evidence support a one-electron hydrogen-atom transfer (HAT) mechanism for the redox step in the oxidation of benzaldehyde. They include (i) moderate k(C-H)/k(C-D) kinetic isotope effects of 8.1 +/- 0.3 in CH3CN, 9.4 +/- 0.4 in H2O, and 7.2 +/- 0.8 in D2O; (ii) a low k(H2O/D2O) kinetic isotope effect of 1.2 +/- 0.1; (iii) a decrease in rate constant by a factor of only approximately 5 in CH3CN and approximately 8 in H2O for the oxidation of benzaldehyde by cis-[Ru(III)(bpy)2(py)(OH)]2+ compared to cis-[Ru(IV)(bpy)2(py)(O)]2+; (iv) the appearance of cis-[Ru(III)(bpy)2(py)(OH)]2+ rather than cis-[Ru(II)(bpy)2(py)(OH2)]2+ as the initial product; and (v) the small rho value of -0.65 +/- 0.03 in a Hammett plot of log k vs sigma in the oxidation of a series of aldehydes. A mechanism is proposed for the process occurring in the absence of O2 involving (i) preassociation of the reactants, (ii) H-atom transfer to Ru(IV)=O2+ to give Ru(III)-OH2+ and PhCO, (iii) capture of PhCO by Ru(III)-OH2+ to give Ru(II)-OC(O)Ph+ and H+, and (iv) solvolysis to give cis-[Ru(II)(bpy)2(py)(NCCH3)]2+ or the aqua complex and the carboxylic acid as products.  相似文献   

8.
Ln6(mu6-O)(mu3-OH)8(H2O)24]I8(H2O)(8) (Ln = Nd, Eu, Tb, Dy) compounds are obtained as the final hydrolysis products of lanthanide triiodides in an aqueous solution. Their X-ray crystal structure features a body-centered arrangement of oxygen-centered {Ln6X8}8+ cluster cores: [Nd6(mu6-O)(mu3-OH)8(H2O)24]I8(H2O)8 [Pearson code oP156, orthorhombic, Pnnm (No. 58), Z = 2, a = 1310.4(3) pm, b = 1502.1(3) pm, c = 1514.9(3) pm, 3384 reflections with I0 > 2sigma(I0), R1 = 0.0340, wR2 = 0.0764, GOF = 1.022, T = 298(2) K], [Eu6(mu6-O)(mu3-OH)8(H2O)24]I8(H2O)8 [Pearson code oP156, orthorhombic, Pnnm (No. 58), Z = 2, a = 1306.6(2) pm, b = 1498.15(19) pm, c = 1499.41(18) pm, 4262 reflections with I0 > 2sigma(I0), R1 = 0.0540, wR2 = 0.0860, GOF = 0.910, T = 298(2) K], [Tb6(mu6-O)(mu3-OH)8(H2O)24]I8(H2O)8 [Pearson code oP156, orthorhombic, Pnnm (No. 58), Z = 2, a = 1296.34(5) pm, b = 1486.13(7) pm, c = 1491.88(6) pm, 4182 reflections with I0 > 2sigma(I0), R1 = 0.0395, wR2 = 0.0924, GOF = 1.000, T = 298(2) K], and [Dy6(mu6-O)(mu3-OH)8(H2O)24]I8(H2O)8 [Pearson code oP156, orthorhombic, Pnnm (No. 58), Z = 2, a = 1296.34(5) pm, b = 1486.13(7) pm, c = 1491.88(6) pm, 3329 reflections with I0 > 2sigma(I0), R1 = 0.0389, wR2 = 0.0801, GOF = 0.992, T = 298(2) K.  相似文献   

9.
Anaerobic oxidations of 9,10-dihydroanthracene (DHA), xanthene, and fluorene by [(bpy)(2)(py)Ru(IV)O](2+) in acetonitrile solution give mixtures of products including oxygenated and non-oxygenated compounds. The products include those formed by organic radical dimerization, such as 9,9'-bixanthene, as well as by oxygen-atom transfer (e.g., xanthone). The kinetics of these reactions have been measured. The kinetic isotope effect for oxidation of DHA vs DHA-d(4) gives k(H)/k(D) > or = 35 +/- 1. The data indicate a mechanism of initial hydrogen-atom abstraction forming radicals that dimerize, disproportionate and are trapped by the oxidant. This mechanism also appears to apply to the oxidations of toluene, ethylbenzene, cumene, indene, and cyclohexene. The rate constants for H-atom abstraction from these substrates correlate well with the strength of the C-H bond that is cleaved. Rate constants for abstraction from DHA and toluene also correlate with those for oxygen radicals and other oxidants. The rate constant for H-atom transfer from toluene to [(bpy)(2)(py)Ru(IV)O](2+) appears to be close to that predicted by the Marcus cross relation, using a tentative rate constant for hydrogen atom self-exchange between [(bpy)(2)(py)Ru(III)OH](2+) and [(bpy)(2)(py)Ru(IV)O](2+).  相似文献   

10.
Sun Y  Hudson ZM  Rao Y  Wang S 《Inorganic chemistry》2011,50(8):3373-3378
Four new Ru(II) complexes, [Ru(bpy)(2)(4,4'-BP2bpy)][PF(6)](2) (1), [Ru(t-Bu-bpy)(2)(4,4'-BP2bpy)][PF(6)](2) (2), [Ru(bpy)(2)(5,5'-BP2bpy)][PF(6)](2) (3), and [Ru(t-Bu-bpy)(2)(5,5'-BP2bpy)][PF(6)](2) (4) have been synthesized (where 4,4'-BP2bpy = 4,4'-bis(BMes(2)phenyl)-2,2'-bpy; 5,5'-BP2bpy = 5,5'-bis(BMes(2)phenyl)-2,2'-bpy (4,4'-BP2bpy); and t-Bu-bpy = 4,4'-bis(t-butyl)-2,2'-bipyridine). These new complexes have been fully characterized. The crystal structures of 3 and 4 were determined by single-crystal X-ray diffraction analyses. All four complexes display distinct metal-to-ligand charge transfer (MLCT) phosphorescence that has a similar quantum efficiency as that of [Ru(bpy)(3)][PF(6)](2) under air, but is at a much lower energy. The MLCT phosphorescence of these complexes has been found to be highly sensitive toward anions such as fluoride and cyanide, which switch the MLCT band to higher energy when added. The triarylboron groups in these compounds not only introduce this color switching mechanism, but also play a key role in the phosphorescence color of the complexes.  相似文献   

11.
Single crystals of [pyH(+)](2)[CuNb(2)(py)(4)O(2)F(10)](2)(-) and CuNb(py)(4)OF(5) were synthesized in a (HF)(x)().pyridine/pyridine/water solution (150 degrees C, 24 h, autogeneous pressure) using CuO and Nb(2)O(5) as reagents. The compound [pyH(+)](2)[CuNb(2)(py)(4)O(2)F(10)](2)(-) contains clusters of [CuNb(2)(py)(4)O(2)F(10)](2)(-) anions linked through N-H(+).F hydrogen bonds to the [pyH(+)] cations. In contrast CuNb(py)(4)OF(5) is a unidimensional compound consisting only of chains, perpendicular to the c axis, of alternating [Cu(py)(4)(O/F)(2/2)](0.5+) and [NbF(4)(O/F)(2/)(2)](0.5)(-) octahedra. The chains change direction between the [110] and [1&onemacr;0] every c/2. Crystal data for [pyH(+)](2)[CuNb(2)(py)(4)O(2)F(10)](2)(-): tetragonal, space group I4(1)22 (No. 98),with a = 11.408(3) ?, c = 30.36(1) ?, and Z = 4. Crystal data for CuNb(py)(4)OF(5): monoclinic, space group C2/c (No. 15), with a = 10.561(3) ?, b = 13.546(6) ?, c = 16.103(4) ?, beta = 97.77(2) degrees, and Z = 4.  相似文献   

12.
We have synthesized the complex [Ru(bpy)(2)(bpy(OH)(2))](2+) (bpy =2,2'-bipyridine, bpy(OH)(2) = 4,4'-dihydroxy-2,2'-bipyridine). Experimental results coupled with computational studies were utilized to investigate the structural and electronic properties of the complex, with particular attention paid toward the effects of deprotonation on these properties. The most distinguishing feature observed in the X-ray structural data is a shortening of the CO bond lengths in the modified ligand upon deprotonation. Similar results are also observed in the computational studies as the CO bond becomes double bond in character after deprotonating the complex. Electrochemically, the hydroxy-modified bipyridyl ligand plays a significant role in the redox properties of the complex. When protonated, the bpy(OH)(2) ligand undergoes irreversible reduction processes; however, when deprotonated, reduction of the substituted ligand is no longer observed, and several new irreversible oxidation processes associated with the modified ligand arise. pH studies indicate [Ru(bpy)(2)(bpy(OH)(2))](2+) has two distinct deprotonations at pK(a1) = 2.7 and pK(a2) = 5.8. The protonated [Ru(bpy)(2)(bpy(OH)(2))](2+) complex has a characteristic UV/Visible absorption spectrum similar to the well-studied complex [Ru(bpy)(3)](2+) with bands arising from Metal-to-Ligand Charge Transfer (MLCT) transitions. When the complex is deprotonated, the absorption spectrum is altered significantly and becomes heavily solvent dependent. Computational methods indicate that the deprotonated bpy(O(-))(2) ligand mixes heavily with the metal d orbitals leading to a new absorption manifold. The transitions in the complex have been assigned as mixed Metal-Ligand to Ligand Charge Transfer (MLLCT).  相似文献   

13.
The new complex trans-[NCRu(py)(4)(CN)Ru(py)(4)NO](PF(6))(3) (I) was synthesized. In acetonitrile solution, I shows an intense visible band (555 nm, epsilon = 5800 M(-1) cm(-1)) and other absorptions below 350 nm, associated with d(pi) --> pi(py) and pi(py) --> pi(py) transitions. The visible band is presently assigned as a donor-acceptor charge transfer (DACT) transition from the remote Ru(II) to the delocalized [Ru(II)-NO(+)] moiety. Photoinduced release of NO is observed upon irradiation at the DACT band. Application of the Hush model reveals strong electronic coupling, with H(DA) = approximately 2000 cm(-1). The difference between the optical absorption energy and redox potentials for the donor and acceptor sites (Ru(III,II), 1.40 V, and NO(+)/NO, 0.50 V, vs Ag/AgCl, 3 M KCl, respectively) (hnu - DeltaE(red)) is 1.33 eV, a large value which probably relates to the significant changes in distances and angles for the Ru-N-O moiety upon reduction. UV-vis absorptions, IR frequencies, and redox potentials are solvent-dependent. Controlled potential reduction (of NO(+)) and oxidation (of Ru(II) associated with the dicyano-chromophore) of I afford stable species, [NCRu(II)(py)(4)(CN)Ru(py)(4)NO](2+) (I(red)) and [NCRu(III)(py)(4)(CN)Ru(py)(4)NO](4+) (I(ox)), respectively, which are characterized by UV-vis and IR spectroscopies. I(red) shows an EPR spectrum characteristic of [Ru(II)-NO(*)] complexes. Compound I is electrophilically reactive in aqueous solution above pH 5: values of the equilibrium constant for the reaction [NCRu(py)(4)(CN)Ru(py)(4)NO](3+)+ 2 OH(-) <--> [NCRu(py)(4)(CN)Ru(py)(4)NO(2)](+) + H(2)O, K = 3.2 +/- 1.4 x 10(15) M(-2), and of the rate constant for the nucleophilic addition of OH(-), k = 9.2 +/- 0.2 x 10(3) M(-1) s(-1)(25 degrees C, I = 1 M), are obtained, with DeltaH = 90.7 +/- 3.8 kJ mol(-1) and DeltaS = 135 +/- 13 J K(-1) mol(-1). The oxidized complex, I(ox), shows an enhanced electrophilic reactivity toward OH(-). This addition reaction is followed by irreversible processes, which most probably lead to disproportionation of bound nitrite and other products.  相似文献   

14.
Guo M  Yu J  Li J  Li Y  Xu R 《Inorganic chemistry》2006,45(8):3281-3286
The first two low-dimensional beryllium phosphates, [C5H14N2]2[Be3(HPO4)5].H2O (BePO-CJ29) and [C6H18N2]0.5[Be2(PO4)(HPO4)OH].0.5 H2O (BePO-CJ30), have been successfully synthesized under mild hydrothermal/solvothermal conditions. BePO-CJ29 is built up from strict alternation of BeO4 and HPO4 tetrahedra forming a unique one-dimensional double chains with 12-ring apertures. There are pseudo-10-ring apertures enclosed by two double chains through H-bonds. BePO-CJ29 can also be viewed as a pseudo 2-D layered structure stabilized by strong H-bonds. The diprotonated 2-methylpiperazium cations are located at three positions (i.e., inside the 12-ring aperture, inside the pseudo-10-ring aperture, and in the interlayer of the inorganic pseudo-layers. BePO-CJ30 is constructed by the alternation of Be-centered tetrahedra (including BeO4 and HBeO4) and P-centered tetrahedra (including PO4 and HPO4) resulting in a two-dimensional layered structure parallel to the (0 1 1) direction. The complex layer is composed of coupled 4.8 net sheets. The diprotonated 1,6-hexandiamine cations and water molecules reside in the interlayer regions and interact with the inorganic layers through H-bonds. Crystal data are as follows: [C5H14N2]2[Be3(HPO4)5].H2O (BePO-CJ29), triclinic, P1 (No. 2), a = 8.1000(9) A, b = 8.4841(14) A, c = 19.665(2) A, alpha = 89.683(10) degrees, beta = 78.182(8) degrees, gamma = 87.932(9) degrees, V = 1321.9(3) A3, Z = 2, R1 = 0.0523 (I > 2sigma(I)), and wR2 = 0.1643 (all data); [C6H18N2]0.5[Be2(PO4)(HPO4)OH].0.5 H2O (BePO-CJ30), orthorhombic, Pccn (No. 56), a = 26.01(4) A, b = 8.431(12) A, c = 9.598(13) A, V = 2105(5) A3, Z = 8, R1 = 0.0833 (I > 2sigma(I)), and wR2 = 0.2278 (all data).  相似文献   

15.
Photodissociation of CO from oxo-centered trinuclear ruthenium clusters [Ru3(mu3-O)(mu-OOCCH3)6(CO)L2] (L = pyridine (py): 1; 4-cyanopyridine (cpy): 2; methanol: 3) dissolved in organic solvents has been examined. Upon photolysis (> or = 290 nm, a 450-W Xe lamp), an absorption peak at 585 nm observed for 1 in CH3CN decreases its intensity and a new absorption band appears and grows at 896 nm. This spectral change, presenting isosbestic points, corresponds to photosubstitution of CO in 1 to form [Ru3(mu3-O)(mu-OOCCH3)6(CH3CN)(py)2] 4. Photoexcitation of carbonyl complexes 2 and 3 in CH3CN also affords the corresponding CH3CN-coordinated complexes [Ru3(mu3-O)(mu-OOCCH3)6(CH3CN)(cpy)2] 6 and [Ru3(mu3-O)(mu-OOCCH3)6(CH3CN)3] 7, respectively. The photosubstitution reactions (excitation wavelength, > or = 290 nm) are well described by the first-order kinetics: k = 7.3 x 10(-4) s(-1) for 1, 4.9 x 10(-4) s(-1) for 2 and 5.1 x 10(-4) s(-1) for 3 (298 K). In the presence of a 100-fold excess of py, photolysis of 1 yields a tris(py) complex [Ru3(mu3-O)(mu-OOCCH3)6(py)3] 5 via photochemical loss of CO followed by coordination of py. The overall reaction (photochemical and thermal) is also confirmed by 1H NMR spectroscopy. The dissociative character of the photosubstitution is supported by negligible effects of the concentration of the entering pyridine molecule, the nature of solvents and the type of terminal monodentate ligands (other than CO) attached to the cluster. Quantum yield measurements with varied excitation wavelengths have shown that absorption bands located in the UV region (< 400 nm) play a principal role in photosubstitution, whereas an absorption band in the visible region (centered at approximately 580 nm), ascribed to an "intracluster" charge transfer, is not at all responsible for photosubstitution.  相似文献   

16.
Crystallographically characterised 3,6-bis(2'-pyridyl)pyridazine (L) forms complexes with {(acac)2Ru} or {(bpy)2Ru2+}via one pyridyl-N/pyridazyl-N chelate site in mononuclear Ru(II) complexes (acac)2Ru(L), 1, and [(bpy)2Ru(L)](ClO4)2, [3](ClO4)2. Coordination of a second metal complex fragment is accompanied by deprotonation at the pyridazyl-C5 carbon {L --> (L - H+)-} to yield cyclometallated, asymmetrically bridged dinuclear complexes [(acac)2Ru(III)(mu-L - H+)Ru(III)(acac)2](ClO4), [2](ClO4), and [(bpy)2Ru(II)(mu-L - H+)Ru(II)(bpy)2](ClO4)3, [4](ClO4)3. The different electronic characteristics of the co-ligands, sigma donating acac- and pi accepting bpy, cause a wide variation in metal redox potentials which facilitates the isolation of the diruthenium(III) form in [2](ClO4) with antiferromagnetically coupled Ru(III) centres (J = -11.5 cm(-1)) and of a luminescent diruthenium(II) species in [4](ClO4)3. The electrogenerated mixed-valent Ru(II)Ru(III) states 2 and [4]4+ with comproportionation constants Kc > 10(8) are assumed to be localised with the Ru(III) ion bonded via the negatively charged pyridyl-N/pyridazyl-C5 chelate site of the bridging (L - H+)- ligand. In spectroelectrochemical experiments they show similar intervalence charge transfer bands of moderate intensity around 1300 nm and comparable g anisotropies (g1-g3 approximatly 0.5) in the EPR spectra. However, the individual g tensor components are distinctly higher for the pi acceptor ligated system [4]4+, signifying stabilised metal d orbitals.  相似文献   

17.
Amidate-bridged diplatinum(II) entities [Pt(2)(bpy)(2)(μ-amidato)(2)](2+) (amidate = pivalamidate and/or benzamidate; bpy = 2,2'-bipyridine) were covalently linked to one or two Ru(bpy)(3)(2+)-type derivatives. An amide group was introduced at the periphery of Ru(bpy)(3)(2+) derivatives to give metalloamide precursors [Ru(bpy)(2)(BnH)](2+) (abbreviated as RuBnH, n = 1 and 2), where deprotonation of amide BnH affords the corresponding amidate Bn, B1H = 4-(4-carbamoylphenyl)-2,2'-bipyridine, and B2H = ethyl 4'-[N-(4-carbamoylphenyl)carbamoyl]-2,2'-bipyridine-4-carboxylate. From a 1:1:1 reaction of [Pt(2)(bpy)(2)(μ-OH)(2)](NO(3))(2), RuBnH, and pivalamide, trinuclear complexes [Pt(2)(bpy)(2)(μ-RuBn)(μ-pivalamidato)](4+) (abbreviated as RuBn-Pt(2)) were isolated and characterized. Tetranuclear complexes [Pt(2)(bpy)(2)(μ-RuBn)(2)](6+) (abbreviated as (RuBn)(2)-Pt(2)) were separately prepared and characterized in detail. The quenching of the triplet excited state of the Ru(bpy)(3)(2+) derivative (i.e., Ru*(bpy)(3)(2+)) upon tethering the Pt(2)(bpy)(2)(μ-amidato)(2)(2+) moiety is strongly enhanced in RuB1-Pt(2) and (RuB1)(2)-Pt(2), while it is only slightly enhanced in RuB2-Pt(2) and (RuB2)(2)-Pt(2). These are partly explained by the driving forces for the electron transfer from the Ru*(bpy)(3)(2+) moiety to the Pt(2)(bpy)(2)(μ-amidato)(2)(2+) moiety (ΔG°(ET)); the ΔG°(ET) values for RuB1-Pt(2), (RuB1)(2)-Pt(2), RuB2-Pt(2), and (RuB2)(2)-Pt(2) are estimated as -0.01, 0.00, +0.22, and +0.28 eV, respectively. The considerable difference in the photochemical properties of the B1- and B2-bridged systems were further examined based on the emission decay and transient absorption measurements, which gave results consistent with the above conclusions.  相似文献   

18.
The synthesis of [Ru(NO(2))L(bpy)(2)](+) (bpy = 2,2'-bipyridine and L = pyridine (py) and pyrazine (pz)) can be accomplished by addition of [Ru(NO)L(bpy)(2)](PF(6))(3) to aqueous solutions of physiological pH. The electrochemical processes of [Ru(NO(2))L(bpy)(2)](+) in aqueous solution were studied by cyclic voltammetry and differential pulse voltammetry. The anodic scan shows a peak around 1.00 V vs. Ag/AgCl attributed to the oxidation process centered on the metal ion. However, in the cathodic scan a second peak around -0.60 V vs. Ag/AgCl was observed and attributed to the reduction process centered on the nitrite ligand. The controlled reduction potential electrolysis at -0.80 V vs. Ag/AgCl shows NO release characteristics as judged by NO measurement with a NO-sensor. This assumption was confirmed by ESI/MS(+) and spectroelectrochemical experiment where cis-[Ru(bpy)(2)L(H(2)O)](2+) was obtained as a product of the reduction of cis-[Ru(II)(NO(2))L(bpy)(2)](+). The vasorelaxation observed in denuded aortic rings pre-contracted with 0.1 mumol L(-1) phenylephrine responded with relaxation in the presence of cis-[Ru(II)(NO(2))L(bpy)(2)](+). The potential of rat aorta cells to metabolize cis-[Ru(II)(NO(2))L(bpy)(2)](+) was also followed by confocal analysis. The obtained results suggest that NO release happens by reduction of cis-[Ru(II)(NO(2))L(bpy)(2)](+) inside the cell. The maximum vasorelaxation was achieved with 1 x 10(-5) mol L(-1) of cis-[Ru(II)(NO(2))L(bpy)(2)](+) complex.  相似文献   

19.
Singh TN  Turro C 《Inorganic chemistry》2004,43(23):7260-7262
The ligand-loss photochemistry of cis-[Ru(bpy)(2)(NH(3))(2)](2+) (bpy = 2,2'-bipyridine) was investigated in water and in the presence of added ligands such as bipyridine and chloride. Irradiation of the complex results in the covalent binding to 9-methyl- and 9-ethylguanine, as well as to single-stranded and double-stranded DNA. This photoinduced DNA binding is not observed for the control complex [Ru(bpy)(2)(en)](2+) (en = ethylenediamine) under similar irradiation conditions. The results presented here show that octahedral Ru(II) complexes with photolabile ligands may prove useful as photoactivated cisplatin analogs.  相似文献   

20.
The geometry and electronic structure of cis-[Ru(II)(bpy)(2)(H(2)O)(2)](2+) and its higher oxidation state species up formally to Ru(VI) have been studied by means of UV-vis, EPR, XAS, and DFT and CASSCF/CASPT2 calculations. DFT calculations of the molecular structures of these species show that, as the oxidation state increases, the Ru-O bond distance decreases, indicating increased degrees of Ru-O multiple bonding. In addition, the O-Ru-O valence bond angle increases as the oxidation state increases. EPR spectroscopy and quantum chemical calculations indicate that low-spin configurations are favored for all oxidation states. Thus, cis-[Ru(IV)(bpy)(2)(OH)(2)](2+) (d(4)) has a singlet ground state and is EPR-silent at low temperatures, while cis-[Ru(V)(bpy)(2)(O)(OH)](2+) (d(3)) has a doublet ground state. XAS spectroscopy of higher oxidation state species and DFT calculations further illuminate the electronic structures of these complexes, particularly with respect to the covalent character of the O-Ru-O fragment. In addition, the photochemical isomerization of cis-[Ru(II)(bpy)(2)(H(2)O)(2)](2+) to its trans-[Ru(II)(bpy)(2)(H(2)O)(2)](2+) isomer has been fully characterized through quantum chemical calculations. The excited-state process is predicted to involve decoordination of one aqua ligand, which leads to a coordinatively unsaturated complex that undergoes structural rearrangement followed by recoordination of water to yield the trans isomer.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号