首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 29 毫秒
1.
Seok WK  Meyer TJ 《Inorganic chemistry》2005,44(11):3931-3941
The oxidation of benzaldehyde and several of its derivatives to their carboxylic acids by cis-[Ru(IV)(bpy)2(py)(O)]2+ (Ru(IV)=O2+; bpy is 2,2'-bipyridine, py is pyridine), cis-[Ru(III)(bpy)2(py)(OH)]2+ (Ru(III)-OH2+), and [Ru(IV)(tpy)(bpy)(O)]2+ (tpy is 2,2':6',2'-terpyridine) in acetonitrile and water has been investigated using a variety of techniques. Several lines of evidence support a one-electron hydrogen-atom transfer (HAT) mechanism for the redox step in the oxidation of benzaldehyde. They include (i) moderate k(C-H)/k(C-D) kinetic isotope effects of 8.1 +/- 0.3 in CH3CN, 9.4 +/- 0.4 in H2O, and 7.2 +/- 0.8 in D2O; (ii) a low k(H2O/D2O) kinetic isotope effect of 1.2 +/- 0.1; (iii) a decrease in rate constant by a factor of only approximately 5 in CH3CN and approximately 8 in H2O for the oxidation of benzaldehyde by cis-[Ru(III)(bpy)2(py)(OH)]2+ compared to cis-[Ru(IV)(bpy)2(py)(O)]2+; (iv) the appearance of cis-[Ru(III)(bpy)2(py)(OH)]2+ rather than cis-[Ru(II)(bpy)2(py)(OH2)]2+ as the initial product; and (v) the small rho value of -0.65 +/- 0.03 in a Hammett plot of log k vs sigma in the oxidation of a series of aldehydes. A mechanism is proposed for the process occurring in the absence of O2 involving (i) preassociation of the reactants, (ii) H-atom transfer to Ru(IV)=O2+ to give Ru(III)-OH2+ and PhCO, (iii) capture of PhCO by Ru(III)-OH2+ to give Ru(II)-OC(O)Ph+ and H+, and (iv) solvolysis to give cis-[Ru(II)(bpy)2(py)(NCCH3)]2+ or the aqua complex and the carboxylic acid as products.  相似文献   

2.
Anaerobic oxidations of 9,10-dihydroanthracene (DHA), xanthene, and fluorene by [(bpy)(2)(py)Ru(IV)O](2+) in acetonitrile solution give mixtures of products including oxygenated and non-oxygenated compounds. The products include those formed by organic radical dimerization, such as 9,9'-bixanthene, as well as by oxygen-atom transfer (e.g., xanthone). The kinetics of these reactions have been measured. The kinetic isotope effect for oxidation of DHA vs DHA-d(4) gives k(H)/k(D) > or = 35 +/- 1. The data indicate a mechanism of initial hydrogen-atom abstraction forming radicals that dimerize, disproportionate and are trapped by the oxidant. This mechanism also appears to apply to the oxidations of toluene, ethylbenzene, cumene, indene, and cyclohexene. The rate constants for H-atom abstraction from these substrates correlate well with the strength of the C-H bond that is cleaved. Rate constants for abstraction from DHA and toluene also correlate with those for oxygen radicals and other oxidants. The rate constant for H-atom transfer from toluene to [(bpy)(2)(py)Ru(IV)O](2+) appears to be close to that predicted by the Marcus cross relation, using a tentative rate constant for hydrogen atom self-exchange between [(bpy)(2)(py)Ru(III)OH](2+) and [(bpy)(2)(py)Ru(IV)O](2+).  相似文献   

3.
The mechanistic details of the Ce(IV)-driven oxidation of water mediated by a series of structurally related catalysts formulated as [Ru(tpy)(L)(OH(2))](2+) [L = 2,2'-bipyridine (bpy), 1; 4,4'-dimethoxy-2,2'-bipyridine (bpy-OMe), 2; 4,4'-dicarboxy-2,2'-bipyridine (bpy-CO(2)H), 3; tpy = 2,2';6',2'-terpyridine] is reported. Cyclic voltammetry shows that each of these complexes undergo three successive (proton-coupled) electron-transfer reactions to generate the [Ru(V)(tpy)(L)O](3+) ([Ru(V)=O](3+)) motif; the relative positions of each of these redox couples reflects the nature of the electron-donating or withdrawing character of the substituents on the bpy ligands. The first two (proton-coupled) electron-transfer reaction steps (k(1) and k(2)) were determined by stopped-flow spectroscopic techniques to be faster for 3 than 1 and 2. The addition of one (or more) equivalents of the terminal electron-acceptor, (NH(4))(2)[Ce(NO(3))(6)] (CAN), to the [Ru(IV)(tpy)(L)O](2+) ([Ru(IV)=O](2+)) forms of each of the catalysts, however, leads to divergent reaction pathways. The addition of 1 eq of CAN to the [Ru(IV)=O](2+) form of 2 generates [Ru(V)=O](3+) (k(3) = 3.7 M(-1) s(-1)), which, in turn, undergoes slow O-O bond formation with the substrate (k(O-O) = 3 × 10(-5) s(-1)). The minimal (or negligible) thermodynamic driving force for the reaction between the [Ru(IV)=O](2+) form of 1 or 3 and 1 eq of CAN results in slow reactivity, but the rate-determining step is assigned as the liberation of dioxygen from the [Ru(IV)-OO](2+) level under catalytic conditions for each complex. Complex 2, however, passes through the [Ru(V)-OO](3+) level prior to the rapid loss of dioxygen. Evidence for a competing reaction pathway is provided for 3, where the [Ru(V)=O](3+) and [Ru(III)-OH](2+) redox levels can be generated by disproportionation of the [Ru(IV)=O](2+) form of the catalyst (k(d) = 1.2 M(-1) s(-1)). An auxiliary reaction pathway involving the abstraction of an O-atom from CAN is also implicated during catalysis. The variability of reactivity for 1-3, including the position of the RDS and potential for O-atom transfer from the terminal oxidant, is confirmed to be intimately sensitive to electron density at the metal site through extensive kinetic and isotopic labeling experiments. This study outlines the need to strike a balance between the reactivity of the [Ru═O](z) unit and the accessibility of higher redox levels in pursuit of robust and reactive water oxidation catalysts.  相似文献   

4.
The kinetics of electron transfer for the reactions cis-[Ru(IV)(bpy)2(py)(O)]2+ + H+ + [Os(II)(bpy)3]2+ <==> cis-[Ru(III)(bpy)2(py)(OH)]2+ + [Os(III)(bpy)3]3+ and cis-[Ru(III)(bpy)2(py)(OH)]2+ + H+ + [Os(II)(bpy)3]2+ <==> cis-[Ru(II)(bpy)2(py)(H2O)]2+ + [Os(III)(bpy)3]3+ have been studied in both directions by varying the pH from 1 to 8. The kinetics are complex but can be fit to a double "square scheme" involving stepwise electron and proton transfer by including the disproportionation equilibrium, 2cis-[Ru(III)(bpy)2(py)(OH)]2+ <==> (3 x 10(3) M(-1) x s(-1) forward, 2.1 x 10(5) M(-1) x s(-1) reverse) cis-[Ru(IV)(bpy)2(py)(O)]2+ + cis-[Ru(II)(bpy)2(py)(H2O)]2+. Electron transfer is outer-sphere and uncoupled from proton transfer. The kinetic study has revealed (1) pH-dependent reactions where the pH dependence arises from the distribution between acid and base forms and not from variations in the driving force; (2) competing pathways involving initial electron transfer or initial proton transfer whose relative importance depends on pH; (3) a significant inhibition to outer-sphere electron transfer for the Ru(IV)=O2+/Ru(III)-OH2+ couple because of the large difference in pK(a) values between Ru(IV)=OH3+ (pK(a) < 0) and Ru(III)-OH2+ (pK(a) > 14); and (4) regions where proton loss from cis-[Ru(II)(bpy)2(py)(H2O)]2+ or cis-[Ru(III)(bpy)2(py)(OH)]2+ is rate limiting. The difference in pK(a) values favors more complex pathways such as proton-coupled electron transfer.  相似文献   

5.
Chiu WH  Peng SM  Che CM 《Inorganic chemistry》1996,35(11):3369-3374
Two bis(amido)ruthenium(IV) complexes, [Ru(IV)(bpy)(L-H)(2)](2+) and [Ru(IV)(L)(L-H)(2)](2+) (bpy = 2,2'-bipyridine, L = 2,3-diamino-2,3-dimethylbutane, L-H = (H(2)NCMe(2)CMe(2)NH)(-)), were prepared by chemical oxidation of [Ru(II)(bpy)(L)(2)](2+) and the reaction of [(n-Bu)(4)N][Ru(VI)NCl(4)] with L, respectively. The structures of [Ru(bpy)(L-H)(2)][ZnBr(4)].CH(3)CN and [Ru(L)(L-H)(2)]Cl(2).2H(2)O were determined by X-ray crystal analysis. [Ru(bpy)(L-H)(2)][ZnBr(4)].CH(3)CN crystallizes in the monoclinic space group P2(1)/n with a = 12.597(2) ?, b = 15.909(2) ?, c = 16.785(2) ?, beta = 91.74(1) degrees, and Z = 4. [Ru(L)(L-H)(2)]Cl(2).2H(2)O crystallizes in the tetragonal space group I4(1)/a with a = 31.892(6) ?, c = 10.819(3) ?, and Z = 16. In both complexes, the two Ru-N(amide) bonds are cis to each other with bond distances ranging from 1.835(7) to 1.856(7) ?. The N(amide)-Ru-N(amide) angles are about 110 degrees. The two Ru(IV) complexes are diamagnetic, and the chemical shifts of the amide protons occur at around 13 ppm. Both complexes display reversible metal-amide/metal-amine redox couples in aqueous solution with a pyrolytic graphite electrode. Depending on the pH of the media, reversible/quasireversible 1e(-)-2H(+) Ru(IV)-amide/Ru(III)-amine and 2e(-)-2H(+) Ru(IV)-amide/Ru(II)-amine redox couples have been observed. At pH = 1.0, the E degrees is 0.46 V for [Ru(IV)(bpy)(L-H)(2)](2+)/[Ru(III)(bpy)(L)(2)](3+) and 0.29 V vs SCE for [Ru(IV)(L)(L-H)(2)](2+)/[Ru(III)(L)(3)](3+). The difference in the E degrees values for the two Ru(IV)-amide complexes has been attributed to the fact that the chelating saturated diamine ligand is a better sigma-donor than 2,2'-bipyridine.  相似文献   

6.
The reaction of cis-[Ru(NO)(CH(3)CN)(bpy)(2)](3+) (bpy = 2,2'-bipyridine) in H(2)O at room temperature proceeded to afford two new nitrosylruthenium complexes. These complexes have been identified as nitrosylruthenium complexes containing the N-bound methylcarboxyimidato ligand, cis-[Ru(NO)(NH=C(O)CH(3))(bpy)(2)](2+), and methylcarboxyimido acid ligand, cis-[Ru(NO)(NH=C(OH)CH(3))(bpy)(2)](3+), formed by an electrophilic reaction at the nitrile carbon of the acetonitrile coordinated to the ruthenium ion. The X-ray structure analysis on a single crystal obtained from CH(3)CN-H(2)O solution of cis-[Ru(NO)(NH=C(O)CH(3))(bpy)(2)](PF(6))(3) has been performed: C(22)H(20.5)N(6)O(2)P(2.5)F(15)Ru, orthorhombic, Pccn, a = 15.966(1) A, b = 31.839(1) A, c = 11.707(1) A, V = 5950.8(4) A(3), and Z = 8. The structural results revealed that the single crystal consisted of 1:1 mixture of cis-[Ru(NO)(NH=C(O)CH(3))(bpy)(2)](2+) and cis-[Ru(NO)(NH=C(OH)CH(3))(bpy)(2)](3+) and the structural formula of this single crystal was thus [Ru(NO)(NH=C(OH(0.5))CH(3))(bpy)(2)](PF(6))(2.5). The reaction of cis-[Ru(NO)(CH(3)CN)(bpy)(2)](3+) in dry CH(3)OH-CH(3)CN at room temperature afforded a nitrosylruthenium complex containing the methyl methylcarboxyimidate ligand, cis-[Ru(NO)(NH=C(OCH(3))CH(3))(bpy)(2)](3+). The structure has been determined by X-ray structure analysis: C(25)H(29)N(8)O(18)Cl(3)Ru, monoclinic, P2(1)/c, a = 13.129(1) A, b = 17.053(1) A, c = 15.711(1) A, beta = 90.876(5) degrees, V = 3517.3(4) A(3), and Z = 4.  相似文献   

7.
The molecular structure and crystal-packing mode of the enantiopure chiral building blocks Delta-[Ru(bpy)(2)(py)(2)][(+)-O,O'-dibenzoyl-D-tartrate].12H(2)O (I) and Lambda-[Ru(bpy)(2)(py)(2)][(-)-O,O'-dibenzoyl-L-tartrate].12H(2)O (II) have been determined by single-crystal X-ray diffraction data. This study proposes a model of how the L- and D-dibenzoyltartrate anions recognize the chirality of the hydrophobic [Ru(bpy)(2)(py)(2)](2+) complex. The monoclinic unit cell contains four complex cations, four tartrate anions, and 48 water molecules. Since there are no possibilities to form hydrogen bonds between the cations and anions, chiral recognition is due to crystal packing. Two benzoyl rings of two different tartrate anions are gripping the two bpy-planes of the Ru-complex. Further a third benzoyl ring from a tartrate anion is packed between the two pyridine rings, favoring one enantiomeric form to crystallize from aqueous solution. Crystal structure data for I at 153 K: a = 15.342(3) A, b = 19.200(4) A, c = 18.872(4) A, beta = 104.841(3) degrees, monoclinic space group C(2), R(1)= 0.0239 (I > 2sigma(I)), R(2) = 0.0606, Flack parameter = 0.0115 (with esd 0.0166). For II at 293 K: a = 15.376(4) A, b = 19.388(11) A, c = 19.085(7) A, beta = 105.11(2) degrees, monoclinic space group C121, R(1)= 0.0686 (I > 2sigma(I)), R(2) = 0.1819, Flack parameter = -0.0100 (with esd 0.0521).  相似文献   

8.
We have successfully applied electrospray ionization mass spectrometry (ESI-MS) and (1)H NMR analyses to study ligand substitution reactions of mu-oxo ruthenium bipyridine dimers cis,cis-[(bpy)(2)(L)RuORu(L')(bpy)(2)](n+) (bpy = 2,2'-bipyridine; L and L' = NH(3), H(2)O, and HO(-)) with solvent molecules, that is, acetonitrile, methanol, and acetone. The results clearly show that the ammine ligand is very stable and was not substituted by any solvents, while the aqua ligand was rapidly substituted by all the solvents. In acetonitrile and acetone solutions, the substitution reaction of the aqua ligand(s) competed with a deprotonation reaction from the ligand. The hydroxyl ligand was not substituted by acetonitrile or acetone, but it exchanged slowly with CH(3)O(-) in methanol. The substitution reaction of the aqua ligands in [(bpy)(2)(H(2)O)Ru(III)ORu(III)(H(2)O)(bpy)(2)](4+) was more rapid than that of the hydroxyl ligand in [(bpy)(2)(H(2)O)Ru(III)ORu(IV)(OH)(bpy)(2)](4+). In methanol, slow reduction of Ru(III) to Ru(II) was observed in all the mu-oxo dimers, and the Ru-O-Ru bridge was then cleaved to give mononuclear Ru(II) complexes.  相似文献   

9.
The oxidations of benzyl alcohol, PPh3, and the sulfides (SEt2 and SPh2) (Ph = phenyl and Et = ethyl) by the Os(VI)-hydrazido complex trans-[Os(VI)(tpy)(Cl)2(NN(CH2)4O)](2+) (tpy = 2,2':6',2' '-terpyridine and O(CH2)4N(-) = morpholide) have been investigated in CH3CN solution by UV-visible monitoring and product analysis by gas chromatography-mass spectrometry. For benzyl alcohol and the sulfides, the rate law for the formation of the Os(V)-hydrazido complex, trans-[Os(V)(tpy)(Cl)2(NN(CH2)4O)](+), is first order in both trans-[Os(VI)(tpy)(Cl)2(NN(CH2)4O)](2+) and reductant, with k(benzyl) (25.0 +/- 0.1 degrees C, CH3CN) = (1.80 +/- 0.07) x 10(-4) M(-1) s(-1), k(SEt2) = (1.33 +/- 0.02) x 10(-1) M(-1) s(-1), and k(SPh2) = (1.12 +/- 0.05) x 10(-1) M(-1) s(-1). Reduction of trans-[Os(VI)(tpy)(Cl)2(NN(CH2)4O)](2+) by PPh3 is rapid and accompanied by isomerization and solvolysis to give the Os(IV)-hydrazido product, cis-[Os(IV)(tpy)(NCCH3)2(NN(CH2)4O)](2+), and OPPh3. This reaction presumably occurs by net double Cl-atom transfer to PPh3 to give Cl2PPh3 that subsequently undergoes hydrolysis by trace H2O to give the final product, OPPh3. In the X-ray crystal structure of the Os(IV)-hydrazido complex, the Os-N-N angle of 130.9(5) degrees and the Os-N bond length of 1.971(7) A are consistent with an Os-N double bond.  相似文献   

10.
In aqueous acidic solutions trans-[Ru(VI)(L)(O)(2)](2+) (L=1,12-dimethyl-3,4:9,10-dibenzo-1,12-diaza-5,8-dioxacyclopentadecane) is rapidly reduced by excess NO to give trans-[Ru(L)(NO)(OH)](2+). When ≤1 mol equiv NO is used, the intermediate Ru(IV) species, trans-[Ru(IV)(L)(O)(OH(2))](2+), can be detected. The reaction of [Ru(VI)(L)(O)(2)](2+) with NO is first order with respect to [Ru(VI)] and [NO], k(2)=(4.13±0.21)×10(1) M(-1) s(-1) at 298.0 K. ΔH(≠) and ΔS(≠) are (12.0±0.3) kcal mol(-1) and -(11±1) cal mol(-1) K(-1), respectively. In CH(3)CN, ΔH(≠) and ΔS(≠) have the same values as in H(2)O; this suggests that the mechanism is the same in both solvents. In CH(3)CN, the reaction of [Ru(VI)(L)(O)(2)](2+) with NO produces a blue-green species with λ(max) at approximately 650 nm, which is characteristic of N(2)O(3). N(2)O(3) is formed by coupling of NO(2) with excess NO; it is relatively stable in CH(3)CN, but undergoes rapid hydrolysis in H(2)O. A mechanism that involves oxygen atom transfer from [Ru(VI)(L)(O)(2)](2+) to NO to produce NO(2) is proposed. The kinetics of the reaction of [Ru(IV)(L)(O)(OH(2))](2+) with NO has also been investigated. In this case, the data are consistent with initial one-electron O(-) transfer from Ru(IV) to NO to produce the nitrito species [Ru(III)(L)(ONO)(OH(2))](2+) (k(2)>10(6) M(-1) s(-1)), followed by a reaction with another molecule of NO to give [Ru(L)(NO)(OH)](2+) and NO(2)(-) (k(2)=54.7 M(-1) s(-1)).  相似文献   

11.
Lam WW  Man WL  Wang YN  Lau TC 《Inorganic chemistry》2008,47(15):6771-6778
The kinetics and mechanisms of the oxidation of I (-) and Br (-) by trans-[Ru (VI)(N 2O 2)(O) 2] (2+) have been investigated in aqueous solutions. The reactions have the following stoichiometry: trans-[Ru (VI)(N 2O 2)(O) 2] (2+) + 3X (-) + 2H (+) --> trans-[Ru (IV)(N 2O 2)(O)(OH 2)] (2+) + X 3 (-) (X = Br, I). In the oxidation of I (-) the I 3 (-)is produced in two distinct phases. The first phase produces 45% of I 3 (-) with the rate law d[I 3 (-)]/dt = ( k a + k b[H (+)])[Ru (VI)][I (-)]. The remaining I 3 (-) is produced in the second phase which is much slower, and it follows first-order kinetics but the rate constant is independent of [I (-)], [H (+)], and ionic strength. In the proposed mechanism the first phase involves formation of a charge-transfer complex between Ru (VI) and I (-), which then undergoes a parallel acid-catalyzed oxygen atom transfer to produce [Ru (IV)(N 2O 2)(O)(OHI)] (2+), and a one electron transfer to give [Ru (V)(N 2O 2)(O)(OH)] (2+) and I (*). [Ru (V)(N 2O 2)(O)(OH)] (2+) is a stronger oxidant than [Ru (VI)(N 2O 2)(O) 2] (2+) and will rapidly oxidize another I (-) to I (*). In the second phase the [Ru (IV)(N 2O 2)(O)(OHI)] (2+) undergoes rate-limiting aquation to produce HOI which reacts rapidly with I (-) to produce I 2. In the oxidation of Br (-) the rate law is -d[Ru (VI)]/d t = {( k a2 + k b2[H (+)]) + ( k a3 + k b3[H (+)]) [Br (-)]}[Ru (VI)][Br (-)]. At 298.0 K and I = 0.1 M, k a2 = (2.03 +/- 0.03) x 10 (-2) M (-1) s (-1), k b2 = (1.50 +/- 0.07) x 10 (-1) M (-2) s (-1), k a3 = (7.22 +/- 2.19) x 10 (-1) M (-2) s (-1) and k b3 = (4.85 +/- 0.04) x 10 (2) M (-3) s (-1). The proposed mechanism involves initial oxygen atom transfer from trans-[Ru (VI)(N 2O 2)(O) 2] (2+) to Br (-) to give trans-[Ru (IV)(N 2O 2)(O)(OBr)] (+), which then undergoes parallel aquation and oxidation of Br (-), and both reactions are acid-catalyzed.  相似文献   

12.
The kinetics of the unusually fast reaction of cis- and trans-[Ru(terpy)(NH3)2Cl]2+ (with respect to NH3; terpy=2,2':6',2"-terpyridine) with NO was studied in acidic aqueous solution. The multistep reaction pathway observed for both isomers includes a rapid and reversible formation of an intermediate Ru(III)-NO complex in the first reaction step, for which the rate and activation parameters are in good agreement with an associative substitution behavior of the Ru(III) center (cis isomer, k1=618 +/- 2 M(-1) s(-1), DeltaH(++) = 38 +/- 3 kJ mol(-1), DeltaS(++) = -63 +/- 8 J K(-1) mol(-1), DeltaV(++) = -17.5 +/- 0.8 cm3 mol(-1); k -1 = 0.097 +/- 0.001 s(-1), DeltaH(++) = 27 +/- 8 kJ mol(-1), DeltaS(++) = -173 +/- 28 J K(-1) mol(-1), DeltaV(++) = -17.6 +/- 0.5 cm3 mol(-1); trans isomer, k1 = 1637 +/- 11 M(-1) s(-1), DeltaH(++) = 34 +/- 3 kJ mol(-1), DeltaS(++) = -69 +/-11 J K(-1) mol(-1), DeltaV(++) = -20 +/- 2 cm3 mol(-1); k(-1)=0.47 +/- 0.08 s(-1), DeltaH(++)=39 +/- 5 kJ mol(-1), DeltaS(++) = -121 +/-18 J K(-1) mol(-1), DeltaV(++) = -18.5 +/- 0.4 cm3 mol(-1) at 25 degrees C). The subsequent electron transfer step to form Ru(II)-NO+ occurs spontaneously for the trans isomer, followed by a slow nitrosyl to nitrite conversion, whereas for the cis isomer the reduction of the Ru(III) center is induced by the coordination of an additional NO molecule (cis isomer, k2=51.3 +/- 0.3 M(-1) s(-1), DeltaH(++) = 46 +/- 2 kJ mol(-1), DeltaS(++) = -69 +/- 5 J K(-1) mol(-1), DeltaV(++) = -22.6 +/- 0.2 cm3 mol(-1) at 45 degrees C). The final reaction step involves a slow aquation process for both isomers, which is interpreted in terms of a dissociative substitution mechanism (cis isomer, DeltaV(++) = +23.5 +/- 1.2 cm3 mol(-1); trans isomer, DeltaV(++) = +20.9 +/- 0.4 cm3 mol(-1) at 55 degrees C) that produces two different reaction products, viz. [Ru(terpy)(NH3)(H2O)NO]3+ (product of the cis isomer) and trans-[Ru(terpy)(NH3)2(H2O)]2+. The pi-acceptor properties of the tridentate N-donor chelate (terpy) predominantly control the overall reaction pattern.  相似文献   

13.
Two new Ru complexes containing the 1,10-phenanthroline (phen) and 1,4,7-trithiacyclononane ([9]aneS3, SCH2CH2SCH2CH2SCH2CH2) ligands of general formula [Ru(phen)(L)([9]aneS3)]2+ (L = MeCN, 3; L = pyridine (py), 4) have been prepared and thoroughly characterized. Structural characterization in the solid state has been performed by means of X-ray diffraction analyses, which show a distorted octahedral environment for a diamagnetic d6 Ru(II), as expected. 1H NMR spectroscopy provides evidence that the same structural arrangement is maintained in solution. Further spectroscopic characterization has been carried out by UV-vis spectroscopy where the higher acceptor capability of MeCN versus the py ligand is manifested in a 9-15-nm blue shift in its MLCT bands. The E1/2 redox potential of the Ru(III)/Ru(II) couple for 3 is anodically shifted with respect to its Ru-py analogue, 4, by 60 mV, which is also in agreement with a higher electron-withdrawing capacity of the former. The mechanism for the reaction Ru-py + MeCN--> Ru-MeCN + py has also been investigated at different temperatures with and without irradiation. In the absence of irradiation at 326 K, the thermal process gives kinetic constants of k2 = 1.4 x 10(-5) s(-1) (DeltaH(++) = 108 +/- 3 kJ mol(-1), DeltaS(++) = -8 +/- 9 J K(-1) mol(-1)) and k-2 = 2.9 x 10(-6) s(-1) (DeltaH(++) = 121 +/- 1 kJ mol(-1), DeltaS(++) = 18 +/- 3 J K(-1) mol(-1)). The phototriggered process is faster and consists of preequilibrium formation of an intermediate that thermally decays to the final Ru-MeCN complex with an apparent rate constant of (k1Khnu)app = 1.8 x 10(-4) s(-1) at 304 K, under the continuous irradiation experimental conditions used.  相似文献   

14.
Lam WW  Lee MF  Lau TC 《Inorganic chemistry》2006,45(1):315-321
The kinetics of the oxidation of hydroquinone (H(2)Q) and its derivatives (H(2)Q-X) by trans-[Ru(VI)(tmc)(O)(2)](2+) (tmc = 1,4,8,11-tetramethyl-1,4,8,11-tetraazacyclotetradecane) have been studied in aqueous acidic solutions and in acetonitrile. In H(2)O, the oxidation of H(2)Q has the following stoichiometry: trans-[Ru(VI)(tmc)(O)(2)](2+) + H(2)Q --> trans-[Ru(IV)(tmc)(O)(OH(2))](2+) + Q. The reaction is first order in both Ru(VI) and H(2)Q, and parallel pathways involving the oxidation of H(2)Q and HQ(-) are involved. The kinetic isotope effects are k(H(2)O)/k(D(2)O) = 4.9 and 1.2 at pH = 1.79 and 4.60, respectively. In CH(3)CN, the reaction occurs in two steps, the reduction of trans-[Ru(VI)(tmc)(O)(2)](2+) by 1 equiv of H(2)Q to trans-[Ru(IV)(tmc)(O)(CH(3)CN)](2+), followed by further reduction by another 1 equiv of H(2)Q to trans-[Ru(II)(tmc)(CH(3)CN)(2)](2+). Linear correlations between log(rate constant) at 298.0 K and the O-H bond dissociation energy of H(2)Q-X were obtained for reactions in both H(2)O and CH(3)CN, consistent with a H-atom transfer (HAT) mechanism. Plots of log(rate constant) against log(equilibrium constant) were also linear for these HAT reactions.  相似文献   

15.
Reactions of hydride complexes of ruthenium(II) with hydride acceptors have been examined for Ru(terpy)(bpy)H(+), Ru(terpy)(dmb)H(+), and Ru(η(6)-C(6)Me(6))(bpy)(H)(+) in aqueous media at 25 °C (terpy = 2,2';6',2'-terpyridine, bpy = 2,2'-bipyridine, dmb = 4,4'-dimethyl-2,2'-bipyridine). The acceptors include CO(2), CO, CH(2)O, and H(3)O(+). CO reacts with Ru(terpy)(dmb)H(+) with a rate constant of 1.2 (0.2) × 10(1) M(-1) s(-1), but for Ru(η(6)-C(6)Me(6))(bpy)(H)(+), the reaction was very slow, k ≤ 0.1 M(-1) s(-1). Ru(terpy)(bpy)H(+) and Ru(η(6)-C(6)Me(6))(bpy)(H)(+) react with CH(2)O with rate constants of (6 ± 4) × 10(6) and 1.1 × 10(3) M(-1) s(-1), respectively. The reaction of Ru(η(6)-C(6)Me(6))(bpy)(H)(+) with acid exhibits straightforward, second-order kinetics, with the rate proportional to [Ru(η(6)-C(6)Me(6))(bpy)(H)(+)] and [H(3)O(+)] and k = 2.2 × 10(1) M(-1) s(-1) (μ = 0.1 M, Na(2)SO(4) medium). However, for the case of Ru(terpy)(bpy)H(+), the protonation step is very rapid, and only the formation of the product Ru(terpy)(bpy)(H(2)O)(2+) (presumably via a dihydrogen or dihydride complex) is observed with a k(obs) of ca. 4 s(-1). The hydricities of HCO(2)(-), HCO(-), and H(3)CO(-) in water are estimated as +1.48, -0.76, and +1.57 eV/molecule (+34, -17.5, +36 kcal/mol), respectively. Theoretical studies of the reactions with CO(2) reveal a "product-like" transition state with short C-H and long M-H distances. (Reactant) Ru-H stretched 0.68 ?; (product) C-H stretched only 0.04 ?. The role of water solvent was explored by including one, two, or three water molecules in the calculation.  相似文献   

16.
When adsorbed to optically transparent, thin films of TiO(2) nanoparticles on glass, the aqua complex [Ru(II)(tpy)(bpy(PO(3)H(2))(2))(OH(2))](2+) (bpy(PO(3)H(2))(2) is 2,2'-bipyridyl-4,4'-diphosphonic acid; tpy is 2,2':6',2' '-terpyridine) is oxidized by Ce(IV)(NH(4))(2)(NO(3))(6) in 0.1 M HClO(4) to its Ru(IV)=O(2+) form as shown by UV-visible measurements and analysis of oxidative equivalents by oxidation of hydroquinone to quinone. Kinetic studies on the oxidations of cyclohexene, benzyl alcohol, phenol, and trans-stilbene by surface-bound Ru(IV)=O(2+) by UV-visible monitoring reveal direct evidence for initial 2-electron steps to give Ru(II) intermediates in all four cases. These steps are masked in solution where Ru(IV) --> Ru(II) reduction is followed by rapid reactions between Ru(II) intermediates and Ru(IV)=O(2+) to give Ru(III). Reactions between Ru(II) and Ru(IV)=O(2+) on the surface are inhibited by binding to the surface, which restricts translational mobility. Rate constants on the surface and in solution are comparable, pointing to comparable reactivities. The surface experiments give unprecedented insight into oxidation mechanism with important implications for achieving product selectivity in synthesis by limiting oxidation to two electrons.  相似文献   

17.
Three heterotetranuclear complexes, [{Ru(II)(bpy)(2)(L(n))}(3)Mn(II)](8+) (bpy = 2,2'-bipyridine, n = 2, 4, 6), in which a Mn(II)-tris-bipyridine-like centre is covalently linked to three Ru(II)-tris-bipyridine-like moieties using bridging bis-bipyridine L(n) ligands, have been synthesised and characterised. The electrochemical, photophysical and photochemical properties of these complexes have been investigated in CH(3)CN. The cyclic voltammograms of the three complexes exhibit two successive very close one-electron metal-centred oxidation processes in the positive potential region. The first, which is irreversible, corresponds to the Mn(II)/Mn(III) redox system (E(pa) approximately 0.82 V vs Ag/Ag(+) 0.01 M in CH(3)CN-0.1 M Bu(4)NClO(4)), whereas the second which is, reversible, is associated with the Ru(II)/Ru(III) redox couple (E(1/2) approximately 0.91 V). In the negative potential region, three successive reversible four electron systems are observed, corresponding to ligand-based reduction processes. The three stable dimeric oxidized forms of the complexes, [Mn(2)(III,IV)O(2){Ru(II)(bpy)(2)(L(n))}(4)](11+), [Mn(2)(IV,IV)O(2){Ru(II)(bpy)(2)(L(n))}(4)](12+) and [Mn(2)(IV,IV)O(2){Ru(III)(bpy)(2)(L(n))}(4)](16+) are obtained in fairly good yields by sequential electrolyses after consumption of respectively 1.5, 0.5 and 3 electrons per molecule of initial tetranuclear complexes. The formation of the di-micro-oxo binuclear complexes are the result of the instability of the {[Ru(II)(bpy)(2)(L(n))](3)Mn(III)}(9+) species, which react with residual water, via a disproportionation reaction and the release of one ligand, [Ru(II)(bpy)(2)(L(n))](2+). A quantitative yield can be obtained for these reactions if the electrochemical oxidations are performed in the presence of an added external base like 2,6-dimethylpyridine. Photophysical properties of these compounds have been investigated showing that the luminescence of the Ru(II)-tris-bipyridine-like moieties is little affected by the presence of manganese within the tetranuclear complexes. A slight quenching of the excited states of the ruthenium moieties, which occurs by an intramolecular process, has been observed. Measurements made at low concentration (<1 x 10(-5) M) indicate that some decoordination of Mn(2+) arises in 1a-c. These measurements allow the calculation of the association constants for these complexes. Finally, photoinduced oxidation of the tetranuclear complexes has been performed by continuous photolysis experiments in the presence of a large excess of a diazonium salt, acting as a sacrificial oxidant. The three successive oxidation processes, Mn(II)--> Mn(III)Mn(IV), Mn(III)Mn(IV)--> Mn(IV)Mn(IV) and Ru(II)--> Ru(III) are thus obtained, the addition of 2,6-dimethylpyridine in the medium giving an essentially quantitative yield for the two first photo-induced oxidation steps as found for electrochemical oxidation.  相似文献   

18.
We report the synthesis and characterization of RuC7, a complex in which a heme is covalently attached to a [Ru(bpy)(3)](2+) complex through a -(CH(2))(7)- linker. Insertion of RuC7 into horse heart apomyoglobin gives RuC7Mb, a Ru(heme)-protein conjugate in which [Ru(bpy)(3)](2+) emission is highly quenched. The rate of photoinduced electron transfer (ET) from the resting (Ru(2+)/Fe(3+)) to the transient (Ru(3+)/Fe(2+)) state of RuC7Mb is >10(8) s(-1); the back ET rate (to regenerate Ru(2+)/Fe(3+)) is 1.4 x 10(7) s(-1). Irreversible oxidative quenching by [Co(NH(3))(5)Cl](2+) generates Ru(3+)/Fe(3+): the Ru(3+) complex then oxidizes the porphyrin to a cation radical (P*+); in a subsequent step, P*+ oxidizes both Fe(3+) (to give Fe(IV)=O) and an amino acid residue. The rate of intramolecular reduction of P*+ is 9.8 x 10(3) s(-1); the rate of ferryl formation is 2.9 x 10(3) s(-1). Strong EPR signals attributable to tyrosine and tryptophan radicals were recorded after RuC7MbM(3+) (M = Fe, Mn) was flash-quenched/frozen.  相似文献   

19.
The cis,cis-[(bpy)(2)Ru(III)(OH(2))](2)O(4+) micro-oxo dimeric coordination complex is an efficient catalyst for water oxidation by strong oxidants that proceeds via intermediary formation of cis,cis-[(bpy)(2)Ru(V)(O)](2)O(4+) (hereafter, [5,5]). Repetitive mass spectrometric measurement of the isotopic distribution of O(2) formed in reactions catalyzed by (18)O-labeled catalyst established the existence of two reaction pathways characterized by products containing either one atom each from a ruthenyl O and solvent H(2)O or both O atoms from solvent molecules. The apparent activation parameters for micro-oxo ion-catalyzed water oxidation by Ce(4+) and for [5,5] decay were nearly identical, with DeltaH(++) = 7.6 (+/-1.2) kcal/mol, DeltaS() = -43 (+/-4) cal/deg mol (23 degrees C) and DeltaH(++) = 7.9 (+/-1.1) kcal/mol, DeltaS(++) = -44 (+/-4) cal/deg mol, respectively, in 0.5 M CF(3)SO(3)H. An apparent solvent deuterium kinetic isotope effect (KIE) of 1.7 was measured for O(2) evolution at 23 degrees C; the corresponding KIE for [5,5] decay was 1.6. The (32)O(2)/(34)O(2) isotope distribution was also insensitive to solvent deuteration. On the basis of these results and previously established chemical properties of this class of compounds, mechanisms are proposed that feature as critical reaction steps H(2)O addition to the complex to form covalent hydrates. For the first pathway, the elements of H(2)O are added as OH and H to the adjacent terminal ruthenyl O atoms, and for the second pathway, OH is added to a bipyridine ring and H is added to one of the ruthenyl O atoms.  相似文献   

20.
A theoretical investigation of proton-coupled electron transfer in ruthenium polypyridyl complexes is presented. The three reactions studied are as follows: (1) the comproportionation reaction of [(bpy)(2)(py)Ru(IV)O](2+) and [(bpy)(2)(py)Ru(II)OH(2)](2+) to produce [(bpy)(2)(py)Ru(III)OH](2+); (2) the comproportionation reaction of [(tpy)(bpy)Ru(IV)O](2+) and [(tpy)(bpy)Ru(II)OH(2)](2+) to produce [(tpy)(bpy)Ru(III)OH](2+); and (3) the cross reaction of [(tpy)(bpy)Ru(III)OH](2+) and [(bpy)(2)(py)Ru(II)OH(2)](2+) to produce [(tpy)(bpy)Ru(II)OH(2)](2+) and [(bpy)(2)(py)Ru(III)OH](2+). This investigation is motivated by experimental measurements of rates and kinetic isotope effects for these systems (Binstead, R. A.; Meyer, T. J. J. Am. Chem. Soc. 1987, 109, 3287. Farrer, B. T.; Thorp, H. H. Inorg. Chem. 1999, 38, 2497.). These experiments indicate that the second reaction is nearly one order of magnitude faster than the first reaction, and the third reaction is in the intermediate regime. The experimentally measured kinetic isotope effects for these three reactions are 16.1, 11.4, and 5.8, respectively. The theoretical calculations elucidate the physical basis for the experimentally observed trends in rates and kinetic isotope effects, as well as for the unusually high magnitude of the kinetic isotope effects. In this empirical model, the proton donor-acceptor distance is predicted to be largest for the first reaction and smallest for the third reaction. This prediction is consistent with the degree of steric crowding near the oxygen proton acceptor for the three reactions. The second reaction is faster than the first reaction since a smaller proton donor-acceptor distance leads to a larger overlap between the reactant and product proton vibrational wave functions. The intermediate rate of the third reaction is determined by a balance among several competing factors. The observed trend in the kinetic isotope effects arises from the higher ratio of the hydrogen to deuterium vibrational wave function overlap for larger proton donor-acceptor distances. Thus, the kinetic isotope effect increases for larger proton donor-acceptor distances. The unusually high magnitude of the kinetic isotope effects is due in part to the close proximity of the proton transfer interface to the electron donor and acceptor. This proximity results in strong electrostatic interactions that lead to a relatively small overlap between the reactant and product vibrational wave functions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号