首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
The title complex, [Zn(C5H6O4)(H2O)]n, has a two‐dimensional layer structure. The Zn atoms, in a geometry that is closer to trigonal bipyramidal than square pyramidal, are coordinated by two O atoms of a bidentate dimethyl­malonate ligand, two O atoms of monodentate dimethylmalonate ligands and one O atom from the aqua ligand. The crystal structure is characterized by the intra­layer motif of a hydrogen‐bonded network. Neighboring layers are linked together to build up a three‐dimensional network via van der Waals forces.  相似文献   

2.
The title compound, [CuNa(C4H3O7S)(C10H8N2)(H2O)3]n, consists of one CuII cation, one NaI cation, one 2‐sulfonatobutanedioate trianion (SSC3−), one 2,2′‐bipyridyl (bpy) ligand and three coordinated water molecules as the building unit. The coordination of the CuII cation is composed of two pyridyl N atoms, one water O atom and two carboxylate O atoms in a distorted square‐pyramidal coordination geometry with an axial elongation. The NaI cation is six‐coordinated by three water molecules and three carboxylate O atoms from three SSC3− ligands in a distorted octahedral geometry. Two SSC3− ligands link two CuII cations to form a Cu2(SSC)2(bpy)2 macrocyclic unit lying across an inversion centre, which is further linked by NaI cations via Na—O bonds to give a one‐dimensional chain. Interchain hydrogen bonds link these chains to form a two‐dimensional layer, which is further extended into a three‐dimensional supramolecular framework through π–π stacking interactions. The thermal stability of the title compound has also been investigated.  相似文献   

3.
The title complex, [CaCu(C5H6O4)2(H2O)2]n, is the first heterobimetallic complex based on a substituted malonate dianion. The CuII cation and two independent 2,2‐dimethylmalonate (or 2,2‐dimethylpropanedioate) dianions build up a robust dianionic [Cu(C5H6O4)2]2− complex, which acts as a building block to coordinate to four Ca2+ cations. Each CuII centre is in a four‐coordinate square plane of dimethylmalonate O atoms, while each CaII atom is in an eight‐coordinate distorted bicapped trigonal–prismatic environment of six O atoms from four different dimethylmalonate groups and two water molecules. This arrangement creates a two‐dimensional layer connectivity of the structure. The dianionic [Cu(C5H6O4)2]2− units are involved in different intermolecular hydrogen‐bonding interactions with water molecules via the formation of hydrogen‐bonded rings of graph sets R12(8) and R(6) within this layer. The crystal was nonmerohedrally twinned by rotation about [011] with a major twin volume fraction of 0.513 (3).  相似文献   

4.
In the title compound, [CuCl(C6H6N4)(H2O)][Cu(C4H5NO4)Cl]·H2O, the CuII atom in the cation is coordinated by one Cl ion, two N atoms of the 2,2′‐biimidazole ligand and one aqua ligand. Within the anion, the CuII atom is bonded to one Cl ion, and one N and two O atoms of the imino­diacetate ligand. Neighbouring cations and anions are connected to each other by Cu·Cl semi‐coordination bonds of 2.830 (12) and 3.071 (12) Å, forming a Cu2Cl2 rectangular unit. The dinuclear units further link into a polymeric chain along the a axis through Cu·Oaqua interactions of 2.725 (3) Å. Including the long coordination bonds, the geometries around the Cu atoms in the cation and anion are square‐pyramidal and distorted octahedral, respectively.  相似文献   

5.
In the title complex, {[Cu(C6H5O3)Cl(H2O)]·H2O}n, the CuII atom has a deformed square‐pyramidal coordination geometry formed by two O atoms of the maltolate ligand, two bridging Cl atoms and the coordinated water O atom. The Cu atoms are bridged by Cl atoms to form a polymeric chain. The deprotonated hydroxyl and ketone O atoms of the maltolate ligand form a five‐membered chelate ring with the Cu atom. Stacking interactions and hydrogen bonds exist in the crystal.  相似文献   

6.
In the title compound, [Cu(C7H3N2O4)(C4H5N2)(H2O)], (I), pyridine‐2,6‐dicarboxylate (pydc2−), 2‐aminopyrimidine and aqua ligands coordinate the CuII centre through two N atoms, two carboxylate O atoms and one water O atom, respectively, to give a nominally distorted square‐pyramidal coordination geometry, a common arrangement for copper complexes containing the pydc2− ligand. Because of the presence of Cu...Xbridged contacts (X = N or O) between adjacent molecules in the crystal structures of (I) and three analogous previously reported compounds, and the corresponding uncertainty about the effective coordination number of the CuII centre, density functional theory (DFT) calculations were used to elucidate the degree of covalency in these contacts. The calculated Wiberg and Mayer bond‐order indices reveal that the Cu...O contact can be considered as a coordination bond, whereas the amine group forming a Cu...N contact is not an effective participant in the coordination environment.  相似文献   

7.
In the title compound, [Pb(C6H4NO2)(N3)(H2O)]n, the Pb ion is seven‐coordinated by three N atoms from three azide ligands, two O atoms from two isonicotinate (inic) ligands and two O atoms from two coordinated water molecules, forming a distorted monocapped triangular prismatic coordination geometry. Each azide ligand bridges three PbII ions in a μ1,1,3 coordination mode to form a two‐dimensional three‐connected 63 topology network extending in the bc plane. The carboxylate group of the inic unit and the aqua ligand act as coligands to bridge PbII ions. Adjacent two‐dimensional layers are connected by hydrogen‐bonding interactions between the isonicotinate N atom and the water molecule, resulting in an extended three‐dimensional network. The title complex is the first reported coordination polymer involving a p‐block metal, an azide and a carboxylate.  相似文献   

8.
Crystals of the title compound, [Cu2(C10H9NO3)2(H2O)2]·2CH4N2O, consist of two (N‐salicyl­idene‐β‐alaninato‐κ3O,N,O′)copper(II) coordination units bridged by two water moieties to form a dimer residing on a crystallographic inversion center, along with two uncoordinated urea mol­ecules. The CuII atom has square‐pyramidal coordination, with three donor atoms of the tridentate Schiff base and an O atom of the bridging aqua ligand in the basal plane. The axial position is occupied by the second bridging water ligand at a distance of 2.5941 (18) Å. Hydro­gen bonds between mol­ecules of urea and the neighboring dimer units lead to the formation of a two‐dimensional grid of mol­ecules parallel to [101]. The superposition of the normals of the pyramidal base planes in the direction [100] indicates possible π–π interactions between the neighboring units.  相似文献   

9.
The novel title coordination polymer, {[Cu(C8H4O4)(C10H9N3)]·H2O}n, synthesized by the slow‐diffusion method, takes the form of one‐dimensional zigzag chains built up of CuII cations linked by benzene‐1,3‐dicarboxylate (ipht) anions. An exceptional characteristic of this structure is that it belongs to a small group of metal–organic polymers where ipht is coordinated as a bridging tridentate ligand with monodentate and chelate coordination of individual carboxylate groups. The CuII cation has a highly distorted square‐pyramidal geometry formed by three O atoms from two ipht anions and two N atoms from a di‐2‐pyridylamine (dipya) ligand. The zigzag chains, which run along the b axis, further construct a three‐dimensional metal–organic framework via strong face‐to‐face π–π interactions and hydrogen bonds. A solvent water molecule is linked to the different carboxylate groups via hydrogen bonds. Thermogravimetric and differential scanning calorimetric analyses confirm the strong hydrogen bonding.  相似文献   

10.
The one‐dimensional coordination polymer catena‐poly[diaqua(sulfato‐κO)copper(II)]‐μ2‐glycine‐κ2O:O′], [Cu(SO4)(C2H5NO2)(H2O)2]n, (I), was synthesized by slow evaporation under vacuum of a saturated aqueous equimolar mixture of copper(II) sulfate and glycine. On heating the same blue crystal of this complex to 435 K in an oven, its aspect changed to a very pale blue and crystal structure analysis indicated that it had transformed into the two‐dimensional coordination polymer poly[(μ2‐glycine‐κ2O:O′)(μ4‐sulfato‐κ4O:O′:O′′:O′′)copper(II)], [Cu(SO4)(C2H5NO2)]n, (II). In (I), the CuII cation has a pentacoordinate square‐pyramidal coordination environment. It is coordinated by two water molecules and two O atoms of bridging glycine carboxylate groups in the basal plane, and by a sulfate O atom in the apical position. In complex (II), the CuII cation has an octahedral coordination environment. It is coordinated by four sulfate O atoms, one of which bridges two CuII cations, and two O atoms of bridging glycine carboxylate groups. In the crystal structure of (I), the one‐dimensional polymers, extending along [001], are linked via N—H...O, O—H...O and bifurcated N—H...O,O hydrogen bonds, forming a three‐dimensional framework. In the crystal structure of (II), the two‐dimensional networks are linked via bifurcated N—H...O,O hydrogen bonds involving the sulfate O atoms, forming a three‐dimensional framework. In the crystal structures of both compounds, there are C—H...O hydrogen bonds present, which reinforce the three‐dimensional frameworks.  相似文献   

11.
In the centrosymmetric dinuclear anions of the title bimetallic complex, {[Mg(H2O)6][Cu2(C8H2NO7)2]·2H2O}n, each CuII ion is strongly coordinated by four O atoms in a distorted square‐planar geometry. Two of these O atoms belong to phenolate groups and the other two to carboxylate groups from 5‐nitro‐2‐oxidoisophthalate (L1) trianions, derived from 5‐nitrobenzene‐1,2,3‐tricarboxylic acid (O2N–H3L). The phenolate O atoms bridge the two CuII ions in the anion. In addition, each CuII cation interacts weakly with a symmetry‐related carboxylate O atom of an adjacent L1 ligand, giving a square‐pyramidal coordination geometry. The copper residue forms a ladder‐like linear coordination polymer via L1 ligands. The [Mg(H2O)6]2+ cations sit on centres of inversion. The polymeric anions, cations and free water molecules are self‐assembled into a three‐dimensional supramolecular network via O—H...O hydrogen bonds.  相似文献   

12.
The asymmetric unit of the title compound, {[Cu(C4O4)(C6H6N2O)2(H2O)2]·2H2O}n, consists of one pyridine‐4‐carbox­amide (isonicotinamide or ina) ligand, one‐half of a squarate dianion, a coordinated aqua ligand and a solvent water mol­ecule. Both the CuII and the squarate ions are located on inversion centers. The CuII ions are octa­hedrally surrounded by four O atoms of two water mol­ecules and two squarate anions, and by two N atoms of the isonicotinamide ligands. The crystal structure contains chains of squarate‐1,3‐bridged CuII ions. These chains are held together by N—H⋯O and O—H⋯O inter­molecular hydrogen‐bond inter­actions, forming an extensive three‐dimensional network.  相似文献   

13.
The title complex, [Cu4(C2H3O2)6(OH)2(C5H11N)4]·2H2O, possesses an unusual inversion‐symmetric tetranuclear copper framework, with each CuII atom displaying a square‐pyramidal geometry and one additional long Cu...O contact. The four piperidine ligands are terminal, one at each CuII atom, and the two hydroxide ligands are triply bridging. The six acetate ligands exhibit two distinct coordination modes, namely as two monodentate acetates and four bridging acetates that bridge the two inequivalent copper centres. The noncoordinating acetate O atom is involved in intramolecular hydrogen bonding with H atoms from the hydroxide and one piperidine ligand. In addition, extensive intermolecular hydrogen bonding involving the solvent water molecules is observed.  相似文献   

14.
In the title complex, [Zn(C12H6O4)(H2O)]n, a ZnII polymer based on naphthalene‐1,8‐dicarboxylate (1,8‐nap), the ZnII atoms adopt an elongated octahedral coordination geometry. A zigzag chain is formed by μ2‐aqua ligands and μ2‐carboxylate groups of the 1,8‐nap ligands. Adjacent parallel chains are further linked by 1,8‐nap ligands, forming a twisted two‐dimensional layer structure along the (100) plane.  相似文献   

15.
In the title coordination compound, [Zn(C12H6O4)(C14H14N4)]n, the two ZnII centers exhibit different coordination environments. One ZnII center is four‐coordinated in a distorted tetrahedral environment surrounded by two carboxylate O atoms from two different naphthalene‐1,4‐dicarboxylate (1,4‐ndc) anions and two N atoms from two distinct 1,4‐bis(imidazol‐1‐ylmethyl)benzene (1,4‐bix) ligands. The coordination of the second ZnII center comprises two N atoms from two different 1,4‐bix ligands and three carboxylate O atoms from two different 1,4‐ndc ligands in a highly distorted square‐pyramidal environment. The 1,4‐bix ligand and the 1,4‐ndc anion link adjacent ZnII centers into a two‐dimensional four‐connected (4,4) network. The two (4,4) networks are interpenetrated in a parallel mode.  相似文献   

16.
The crystal structure of the mononuclear title complex, [CuCl2(C10H8N4)(H2O)]·H2O, shows an scis/E/strans‐configured di‐2‐pyridyl­diazene ligand, with the square‐pyramidal CuII ion coordinated to one pyridyl and one diazene N atom together with two Cl atoms and one aqua ligand. The crystal packing involves both hydrogen‐bonding and π–π interactions. The solvent water mol­ecule links three monomers to one another through hydrogen‐bonding interactions in which two monomers are linked via chloro ligands and the third via the aqua ligand. Face‐to‐face and weak slipped π–π interactions also occur between di‐2‐pyridyl­diazene moieties, and these interactions are responsible for the interchain packing.  相似文献   

17.
In the title complex, {[Cu(C8H8NO3S)2(H2O)]·2H2O}n, the CuII cation has a distorted square‐pyramidal coordination environment consisting of five O atoms, one from a water molecule, one from an N—O group and the other three from the carboxylate groups of two 3‐(2‐pyridylsulfanyl)propionate N‐oxide anions. The aqua[3‐(2‐pyridylsulfanyl)propionato N‐oxide]copper(II) moieties are bridged by 3‐(2‐pyridylsulfanyl)propionate N‐oxide anions to form an infinite three‐dimensional coordination polymer with a zigzag chain structure. The crystal structure is stabilized by hydrogen bonds.  相似文献   

18.
A novel copper(II) coordination polymer, poly­[[[aqua­copper(II)]‐μ3‐2,2′‐bipyridyl‐3,3′‐di­carboxyl­ato‐κ4N,N′:O:O′] dihydrate], {[Cu(C12H6N2O4)(H2O)]·2H2O}n, was obtained by the reaction of CuCl2·2H2O and 2,2′‐bipyridyl‐3,3′‐di­carboxylic acid (H2L) in water. In the mol­ecule, each CuII atom is five‐coordinated and lies at the centre of a square‐pyramidal basal plane, bridged by three L ligands to form a two‐dimensional (4,4)‐network. Each L moiety acts as a bridging tetradentate ligand, coordinating to three CuII atoms through its two aromatic N atoms and two O atoms of the two carboxyl groups. The two‐dimensional square‐grid sheets superimpose in an off‐set fashion through the inorganic water layer.  相似文献   

19.
The triply bridged title dinuclear copper(II) compound, [Cu2(C2H3O2)(OH)(C12H8N2)2(H2O)](NO3)2·H2O, (I), consists of a [Cu22‐CH3COO)(μ2‐OH)(phen)22‐OH2)]2+ cation (phen is 1,10‐phenanthroline), two uncoordinated nitrate anions and one water molecule. The title cation contains a distorted square‐pyramidal arrangement around each metal centre with a CuN2O3 chromophore. In the dinuclear unit, both CuII ions are linked through a hydroxide bridge and a triatomic bridging carboxylate group, and at the axial positions through a water molecule. The phenanthroline groups in neighbouring dinuclear units interdigitate along the [010] direction, generating several π–π contacts which give rise to planar arrays parallel to (001). These are in turn connected by hydrogen bonds involving the aqua and hydroxide groups as donors with the nitrate anions as acceptors. Comparisons are made with isostructural compounds having similar cationic units but different counter‐ions; the role of hydrogen bonding in the overall three‐dimensional structure and its ultimate effect on the cell dimensions are discussed.  相似文献   

20.
In the title complex, {[Cd(C5H6O4)(H2O)2]·4H2O}n, the dimethylmalonate–cadmium metal–organic framework co‐exists with an extended structure of water molecules, which resembles a sodalite‐type framework. In the asymmetric unit, there are five independent solvent water molecules, two of which are in special positions. The Cd atoms are eight‐coordinated in a distorted square‐antiprismatic geometry by six O atoms of three different dimethylmalonate groups and by two water molecules, and form a two‐dimensional honeycomb layer parallel to the bc plane. Two such layers sandwich the hydrogen‐bonded water layer, which has a sodalite‐type structure with truncated sodalite units composed of coordinated and solvent water molecules. This work is the first example of a dimethylmalonate cadmium complex containing truncated sodalite‐type water clusters.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号